49th National Organic Chemistry Symposium American Chemical Society 49th National Organic Chemistry Symposium [June 22-26, 2025] Rensselaer Polytechnic Institute (RPI) Troy, NY, USA # 49th National Organic Chemistry Symposium Rensselaer Polytechnic Institute Troy, New York June 22 – 26, 2025 # Table of Contents | Welcome & History | 2 | |--|----| | Sponsors & Exhibitors | 7 | | DOC Committee Members / Symposium Organizers | 10 | | Benefits of Becoming a DOC Member | 12 | | Symposium Schedule | 13 | | Lecture Abstracts | 18 | | The Roger Adams Award | 27 | | Lecture Abstracts (continued) | 29 | | Afternoon Programming | 37 | | NOS Travel Awards | 39 | | Poster Schedule with Titles & Authors | 41 | | General Information | 73 | | Info for People Staying in the Blitman Dormitory (new 6/13/2025) | 75 | | Info for Attendees Staying at Troy Hotels (new 6/13/2025) | | | Campus Map | 79 | ## Welcome to Rensselaer Polytechnic Institute On behalf of the Executive Committee of the Division of Organic Chemistry (DOC) of the American Chemical Society and the Department of Chemistry & Chemical Biology at Rensselaer Polytechnic Institute (RPI), we welcome you to the 49th National Organic Chemistry Symposium (NOS) as we celebrate the 100-year anniversary of this event. This biennial symposium is the premier event sponsored by the DOC and its goal is to present a roster of distinguished speakers that represent the breadth and creative advances of organic chemistry. The first NOS was held in Rochester, NY in 1925 and a closer look at this historic symposium is provided below. The early organizers decided on a biennial sequence and the NOS has been held in odd-numbered years ever since, with two exceptions: WWII led to the 1943 and 1945 symposia being canceled and the COVID pandemic caused the 2021 NOS to be held in 2022. The NOS was been held in New York State five previous times (1925, 1933, 1935, 1957, and 1989) and so our theme this year is *Return to the Roots* as the NOS is once again being held in NY for the record sixth time. In 1959, the Roger Adams Award was established, and it has been associated with the NOS from the start. The 49th National Organic Chemistry Symposium features 17 plenary speakers, including the 2025 Roger Adams Awardee, Eric N. Jacobsen of Harvard University. The lectures will be held in the Concert Hall of the Curtis R. Priem Experimental Media and Performing Arts Center (EMPAC). The nightly poster sessions, featuring a total of over 250 posters, will be held in Studio 1 and Studio 2 in EMPAC. There is also optional afternoon programming: a lecture by Phaedria Maria St. Hilaire, two career panels, and the popular undergraduate context session. We are excited to welcome over 450 attendees to the NOS. Rensselaer is honored to host this prestigious event on our historic Troy campus, where innovation and interdisciplinary collaboration are part of our core identity. We are proud to support the advancement of organic chemistry and the frontiers of chemistry and chemical biology. We are excited to provide a vibrant setting for the exchange of cutting-edge research, inspiring ideas, and new connections. We hope you enjoy the stimulating scientific program, the opportunity to engage with colleagues from around the world, and the warm hospitality of the Capital Region. The organizers have arranged several activities including a riverboat ride on the Hudson River and a tour of the New York State Capitol Building in downtown Albany. Additional attractions in the region are described at the end of this program book. We thank all of our sponsors and exhibitors for providing generous financial support for the NOS. This critical support makes the NOS possible. We also wish to thank the dozens of organizers and volunteers who have helped plan this event. Finally, we thank *you* for attending and participating to help us celebrate the 100-year anniversary of the National Organic Chemistry Symposium. Edward E. Fenlon 49th NOS Executive Officer Franklin & Marshall College Christopher L. Cioffi 49th NOS Local Chair Rensselaer Polytechnic Institute ## The First NOS • 100 Years Ago In late December 1925, around 175 organic chemists gathered for a symposium held at the Eastman School of Music in Rochester, NY. Most of them traveled by train and the weather was characteristically cold (the low was -5 °F a few days before). The 23 speakers were all men (the first woman to speak at the NOS was Marye Anne Fox in 1985), but they were not as monolithic as it first may appear (Figure 1). The chemistry they discussed ranged from the synthesis of dihydro-chaulmoogric acid, to catalytic reactions of acetylene, to cellulose chemistry, and from plant sterols to thiazole chemistry. Most of the speakers were from academic institutions, but four were industrial chemists. The industrial speakers at more recent NOS have been from the pharmaceutical industry, but in 1925, they were from the rubber, meat packing, and paper industries. Furthermore, five of the 23 speakers were immigrants to the US. **Figure 1.** The 23 speakers at the 1st NOS. Industrial chemists indicated with * and immigrants indicated with † (Sweden, Scotland, Ukraine, Russia, and Belgium, respectively). Like today, afternoon fieldtrips were part of the NOS in 1925. One trip was made to the Eastman Kodak laboratories and another to the University of Rochester Medical School. On Wednesday December 30 the chemists enjoyed a music and dance version of the "Merry Widow" which had been released as a silent film starring Mae Murray earlier in the year. In closing, we turn to the remarks made in 1925 by M. T. Bogert of Columbia University, who served as the first Chair of the NOS. They remain relevant 100 years later. What is more alluring than our own field of chemistry, and what more fascinating part has it than organic study? My wish for the coming year is that you many have faith to carry your work through and courage to make your scientific dreams come true. Dr. Martin A. Schmidt President June 22 - 26, 2025 Dear Friends, It is my distinct pleasure to welcome you to the Rensselaer Polytechnic Institute campus for the 2025 American Chemical Society, Division of Organic Chemistry's National Organic Chemistry Symposium. Since its founding, the National Organic Chemistry Symposium (NOS) has been a vital forum for advancing the frontiers of organic chemistry. By bringing together thought leaders, researchers, and students from across the country, this symposium serves as a catalyst for innovation, collaboration, and scientific discovery. Your work—spanning academic research, pharmaceutical breakthroughs, and technological applications—plays a crucial role in addressing some of society's most complex challenges. Rensselaer is proud to host this prestigious gathering, and we are honored to support your mission to deepen our understanding of the molecular world. As you share knowledge and explore new ideas during your time here, I encourage you to take advantage of the spirit of inquiry and excellence that defines our campus community. On behalf of the entire Rensselaer community, I thank you for your contributions to science and for your dedication to improving the human condition. Best wishes for a stimulating and successful symposium. Sincerely, Martin A. Schmidt President Rensselaer Polytechnic Institute KATHY HOCHUL June 22 - 26, 2025 #### Dear Friends: It is my pleasure to send greetings to everyone gathered for the 2025 American Chemical Society, Division of Organic Chemistry's National Organic Chemistry Symposium. Since its inception, the National Organic Chemistry Symposium (NOS) has brought leaders together to highlight advances in their field. Organic chemists from across the country participate and learn from each other's work, including academic research and pharmaceutical innovations. Together, you aid in our understanding of the scientific world around us and how we can solve some of humanity's most pressing problems. Today, you gather to share your discoveries and scholarly research, and expand your knowledge of organic chemistry. On behalf of all New Yorkers, I am grateful for your commitment to scientific pursuits. Best wishes for a successful symposium. Sincerely, Ath Hochel Kathy Hochel Governor ### 49th National Organic Chemistry Symposium 2025 • Rensselaer Polytechnic Institute TONKO.HOUSE.GOV @RepPaulTonko 2369 RAYBURN HOUSE OFFICE BUILDING WASHINGTON, DC 20515 (202) 225-5076 > 19 DOVE STREET, SUITE 302 ALBANY, NY 12210 (518) 465–0700 433 BROADWAY, SUITE 201 SARATOGA SPRINGS, NY 12866 (518) 374-4547 COMMITTEE ON ENERGY AND COMMERCE RANKING MEMBER, SUBCOMMITTEE ON ENVIRONMENT MANUFACTURING, AND CRITICAL MATERIALS SUBCOMMITTEE ON ENERGY, CLIMATE, AND GRID SECURITY SUBCOMMITTEE ON OVERSIGHT AND INVESTIGATIONS COMMITTEE ON SCIENCE, SPACE, AND TECHNOLOGY June 22, 2025 American Chemical Society Division of Organic Chemistry Rensselaer Polytechnic Institute 110 Eighth Street Troy, New York 12180 Dear Friends: I am delighted to extend my greetings as you gather for the 49th National Organic Chemistry Symposium. It is especially fitting that such a grand event be held at Rensselaer Polytechnic Institute, an institution renowned for its leadership in scientific and technological innovation for more than two centuries. As you celebrate 100 years of organic chemistry research and advancement, let me be the first to welcome you to New York's Capital Region. The study of Organic Chemistry is vital to understanding the molecular processes that drive life. By understanding these processes, we can work to address complex problems with sustainable solutions. The National Organic Chemistry Symposium is an invaluable opportunity for members of the American Chemical Society Division of Organic Chemistry to increase their scientific knowledge, skills, and networks. Uniting scientists across the country under one
organization gives you the opportunity to speak with one voice and elevate your issues and values on a national stage. This conference is a testament to the strength and success of your organization. I extend my warmest welcome to this year's attendees and offer my sincere congratulations to the organizers of this fantastic event. I look forward to our continued friendship and many more gatherings in the future. Good luck and best wishes! Sincerely, PAUL D. TONKO Member of Congress PDT/am # Sponsors and Exhibitors Bristol Myers Squibb abbyie Lilly sanofi Waters™ ## Roger Adams Award Sponsors # WILEY ### **Poster Award Sponsors** ### **ACS Division of Organic Chemistry** | Chair | Amy Howell | Members-at-Large | Leila Abrous | |----------------------------|--|--------------------------|-----------------------| | Chair-Elect | Steven Silverman | | Annabel Ansel | | Past-Chair | Angie R. Angeles | | Eric Anslyn | | Treasurer | Joseph S. Ward III | | Paul Blakemore | | Secretary | Richard Broene | | Mingji Dai | | Program Chair | Scott Bagley | | Alison Frontier | | Program Chair- | | | Aleksandra Holownia | | Elect | M. Kevin Brown | | Jessica Hoover | | Past Program | | | André K. Isaacs | | Chair | Emily C. McLaughlin | | Vanessa M. Marx | | 49 th NOS Chair | Edward E. Fenlon | | Andy McNally | | 50 th NOS Chair | Mingji Dai | | Steven Wisniewski | | 51st NOS Chair | Alex Grenning | Graduate Research | Angie R. Angeles | | | , and the second | Symposium Organizers | P. Andrew Evans | | Councilors | Monica Marie Arroyo | Regional Meeting Liaison | Franklin A. Davis | | | Huw Davies | Undergraduate Award | NI N (:11 - | | | Lisa McElwee-White | Program Director | Nancy Mills | | | Elizabeth Swift | SURF Committee | Katelyn Billings | | | | co-Chairs | Karen Draths | | Alternate | Alex Grenning | ACS Fellows & Awards | Mi ala a al Diumura a | | Councilors | Jon Rainier | Committee Chair | Michael Pirrung | | | Daniel J. Weix | Web/Technology Team | Joseph S. Ward III | | | Yang Yang | | Brian J. Myers | | | | | Andrew Philip | | | | | Freiburger | | | | | Jennifer Muzyka | | | | | Jessica Sampson | | | | | Khoi Van | ### **NOS Committee** Edward E. Fenlon, Chair Leila Abrous Annabel Ansel Mingji Dai Alex Grenning Brian J. Myers Christopher L. Cioffi, Local Chair Annabel Ansel Andrew Freiburger Andy McNally Jon Rainier ### **RPI Event Staff and Other Organizers** Christopher Cioffi Wilfredo Colón Kristin Johnson-Finn Rachel Mattke Kim Strosahl Kim Gardner John Cook Stephanie Van Sandt David Bebb Rebecca Hanesack Lynn Gray Betsy Preston Mohamed Ali Timothy Schmidt John Myron Zerebynsky Stephen Kraz Shelby Robinson Patricia Groeber Steven Schwan Rose Marie LaPietra John Lawler Paul Martin Pamela Smith Sharon Gardner J. C. Sylvan Juergen Hahn Maxwell Moten Peter Grimm Cheryl McGlothlin Kirk Ives Casey Benson Katie O'Malley Maloney Ben Stickan Geetu Sharma Margarita Kirova-Snover Filbert Totsingan Chulsung Bae Gaetano Montelione Amani Dinar Xuan Thi Nguyen Nyati Misra Daniel Rosenkranz Annika Scully Surya Krishnakumar Ashma Adhikari Jacob Aubrey Melina Michailidis Alfredo DiPaola Samantha Pryor Kavita Ramnath Adam McKnight Alexandre Pennell Lucia Vasquez Jack Foland Anna De Falco Mahesh Gaddam Savanna Ward Grip Nikita Waskiewicz Tanmay Pati Sheila Luong Eric Hatcher Benjamin Howard Brianna Casey Thangam Ramar Michael Del Grosso Caitlyn Mutchler Brandon Russel Julian Arnold Selmina Huskic Eric Brucker # Join the Division of Organic Chemistry https://www.organicdivision.org/join/ ### 2025 NOS SPEAKER and EVENT SCHEDULE All plenary lectures will be held in the Curtis R. Priem EMPAC Concert Hall. Posters sessions will be held in the EMPAC Studio 1 and Studio 2. The St. Hilaire talk, career panels, and undergraduate context session will be held in the Shirley Ann Jackson, Ph.D. Center for Biotechnology and Interdisciplinary Studies (CBIS) Isermann Auditorium. ### SUNDAY, June 22 | 3:00 – 11:00 PM | Registration | EMPAC Lobby | |--------------------|--|---| | 8:30 – 11:00 PM | Poster Session & Exhibitors | EMPAC Studio 1 and Studio 2 | | MONDAY, June 23 | | | | 7:30 AM – 12:00 PM | Registration | EMPAC Lobby | | 7:15 – 8:30 AM | Breakfast buffet | EMPAC Lobby | | 8:15 – 8:35 AM | Opening Remarks Edward E. Fenlon , Franklin & Ma Wilfredo Colón , RPI (Chair of Co | , | | 8:35 – 8:45 AM | Poster Awards Sponsored by AC | S publications | | Presider: | Amy Howell, U. of Connecticut | EMPAC Concert Hall | | 8:45 – 9:45 AM | Véronique Gouverneur , Oxford "Advances in Fluorine Chemis Mind" | <i>University</i> try with Global Challenges in | | 9:45 – 10:45 AM | Francis Gosselin, Genentech "Asymmetric Catalysis and Data to Enable Breakthroughs in Proce | | | 10:45 – 11:10 AM | Break | | |---------------------|--|---| | 11:10 AM – 12:10 PM | Lou Charkoudian, Haverford College "Unearthing the innerworkings of polyketide synthases by leaning into the unexplored and unexpected" | | | 12:10 PM | Box Lunch | EMPAC Lobby | | 12:15 – 2:15 PM | Stewart's Ice Cream Social | EMPAC Lobby or Terrace | | | Afternoon Programming | CBIS Isermann Auditorium | | 1:30 – 2:30 PM | Phaedria Marie St. Hilaire , <i>P M</i> "Inclusive Leadership and DE Science" | Consulting; cofounder of ProWoc I as a means to Excellence in | | 2:45 – 3:45 PM | Primarily Undergraduate Institution (PUI) Career Panel Rick Broene, Bowdoin; Lou Charkoudian, Haverford; Megan Jacobson, Southern Idaho; Jim Vyvyan, Western Washington U. | | | Presider: | Leila Abrous, Cal St. San Marcos | EMPAC Concert Hall | | 6:30 – 7:30 PM | Neil Garg , <i>University of California Los Angeles</i> "Strained Intermediates and Chemical Education" | | | 7:30 – 8:30 PM | Morten Meldal University of Copenhagen "Molecular Click Adventures: The intramolecular INAIC-click reaction" | | | 8:30 – 11:00 PM | Poster Session & Exhibitors | EMPAC Studio 1 and Studio 2 | | TUESDAY, June 24 | | | | 7:15 – 8:30 AM | Breakfast buffet | EMPAC Lobby | | 8:20 AM | Poster Awards
Sponsored by Wiley-VCH | EMPAC Concert Hall | | Presider: | Christopher Cioffi, RPI | EMPAC Concert Hall | | 8:30 – 9:30 AM | Karen Wooley, Texas A & M Uni
"Sugar Plastics: An evolution of
polymers from nanoparticle
morphological metamorphoses to | carbohydrate-derived synthetic targets to structural and | 49th National Organic Chemistry Symposium 2025 • Rensselaer Polytechnic Institute 9:30 – 10:30 AM **Richard Gross**, Rensselaer Polytechnic Institute "Molecular editing of sophorolipids to interrogate structure- property relationships for diverse applications" 10:30 – 11:00 AM Break 11:00 AM – 12:00 PM Sidney Wilkerson-Hill, University of North Carolina Chapel Hill "Orphaned Cyclopropanes" 12:00 PM Box Lunch EMPAC Lobby 1:00 PM Bus departs for Capt. JP Riverboat Cruise on the Hudson River The Roger Adams Award Ceremony EMPAC Concert Hall 6:30 – 6:45 PM **Robert E. Maleczka, Jr.,** *Michigan State University* (Board of Directors and Treasurer, *Organic Reactions*) "Celebrating Eight Decades of Organic Reactions" 6:45 – 7:00 PM **John L. Wood**, *Baylor University*, **Presider** (Board of Directors, *Organic Syntheses*) Presentation of the Roger Adams Award 7:00 – 8:30 PM **2025 Roger Adams Award Lecture: Eric N. Jacobsen**, Harvard University "Navigating Between the Worlds of Physical-Organic and Synthetic Chemistry" 8:30 – 11:00 PM Poster Session & Exhibitors EMPAC Studio 1 and Studio 2 WEDNESDAY, June 25 7:15 – 8:30 AM Breakfast buffet EMPAC Lobby 8:20 AM Poster Awards EMPAC Concert Hall Sponsored by
Wiley-VCH Presider: Emily McLaughlin, Bard College EMPAC Concert Hall 8:30 – 9:30 AM **Daniel Romo**, *Baylor University* "Pharmacophore-Directed Retrosynthesis: Merging Total Synthesis with SAR Gathering to Inform Mechanism of Action Studies of Natural Products" | 49 th National Organic | Chemistry Symposium | 2025 • Rensselaer Pol | vtechnic Institute | |-----------------------------------|---------------------|-----------------------|--------------------| | | | | 2 | 9:30 - 10:30 AM **Amanda Hargrove**, University of Toronto "Strategies to modulate the conformation and function of RNA with small molecules" 10:30 - 11:00 AM **Break** 11:00 AM – 12:00 PM **Heather Maynard**, *University of California Los Angeles* "Responsive Conjugates for Drug Delivery" 12:00 PM **Box Lunch EMPAC** Lobby 1:00 PM Bus departs for NYS Capitol Building, Albany Institute of History and Art, and Empire State Plaza **CBIS Isermann Auditorium** Afternoon Programming 1:00 - 2:25 PM **Undergraduate Context Session** Ron Brisbois, Macalester College; Jeff Katz, Colby College; Sarah Tasker, Franklin & Marshall College 2:30 - 3:30 PM **Industry Career Panel CBIS Isermann Auditorium** Jen Allen, *Amgen*; Jacqui Hoffman, *Pfizer*; Stephen Lathrop *AbbVie*; Daniel Zell, Genentech WEDNESDAY, June 25 (evening) Presider: Andy McNally, Colorado State U. EMPAC Concert Hall 6:30 – 7:30 PM Jennifer Allen, Amgen "A Day in The Life of a Medicinal Chemist - Discovery of Sotorasib" 7:30 - 8:30 PM **David Leigh**, *University of Manchester* "Giving Chemistry Direction" Poster Session & Exhibitors EMPAC Studio 1 and Studio 2 8:30 - 11:00 PM **THURSDAY**, June 26 Breakfast buffet 7:15 - 8:30 AM **EMPAC Lobby** 8:20 AM Poster Awards **EMPAC Concert Hall** Sponsored by ACS publications ### 49th National Organic Chemistry Symposium 2025 • Rensselaer Polytechnic Institute EMPAC Concert Hall Mingji Dai, Emory University | 8:30 – 9:30 AM | Melanie Sanford, University of Michigan "Diverse Synthetic Approaches for Carbon-Fluorine Bond Formation" | |---------------------|---| | 9:30 – 10:30 AM | Keary Engle, <i>Scripps Institute</i> "Advances in Programmed Alkene Functionalization" | | 10:30 – 11:00 AM | Break | | 11:00 AM – 12:00 PM | Craig Crews, Yale University | "Developing Novel Induced Proximity Therapeutic Modalities: 12:00 – 12:20 PM **Mingji Dai**, Emory University 2027 NOS Chair Closing Remarks 12:20 PM Box Lunch EMPAC Lobby PROTACs and Beyond" 12:20 PM End of NOS. See you in 2027. **Presider**: **Véronique Gouverneur** Oxford University Oxford, United Kingdom Mon June 23 at 8:45 AM ### Advances in Fluorine Chemistry with Global Challenges in Mind The Gouverneur laboratory has developed new approaches for the synthesis of fluorochemicals for applications in the life and material sciences. This work has enhanced our fundamental understanding of alkali metal fluoride reactivity, and led to the invention of hydrogen bonding phase transfer catalysis (HBPTC), a new concept in organocatalysis opening new opportunities in organic chemistry. In this lecture, the discussion will focus on innovative approaches aimed at addressing the challenges currently facing the fluorochemical industry. A specific highlight is the demonstration that it is possible to convert naturally occurring fluorspar (CaF₂) into complex fluorochemicals applying a method that bypasses the necessity to manufacture hydrofluoric acid, a toxic and highly dangerous acid. Another recent advance is the design of a method for the destruction of PFAS coupled with fluorine recovery in the spirit of a circular fluorine economy. Francis Gosselin Genentech Research & Early Development South San Francisco, CA, USA Mon June 23 at 9:45 AM ### Asymmetric Catalysis and Data Science: A Potent Combination to Enable Breakthroughs in Process Chemistry High-throughput experimentation, augmented with data science, enabled the identification and development of a highly atroposelective Negishi cross-coupling for the long-term manufacturing process of KRAS^{G12C} covalent inhibitor GDC-6036 (divarasib).¹ The success of these efforts prompted the development of a broadly applicable chiral bisphosphine computed parameter open-source database to enable applications in asymmetric catalysis to support the Genentech pipeline.² Recent examples leveraging consecutive asymmetric transformations, establishing enantioselective entries into sulfonimidamides, and improved deoxyfluorination reagents will also be presented.³⁴ ¹ Grosslight, S.; Mack, K.; Nguyen, S.; Clagg, K.; Lim, N.-K.; Timmerman, J.; Shen, J.; White, N.; Sirois, L.; Han, C.; Zhang, H.; Sigman, M.; Gosselin, F. J. Am. Chem. Soc. 2022, 144, 20955-20963. (b) Xu, J.; Lim, N.-K.; Timmerman, J.; Shen, J.; Clagg, K.; Orcel, U.; Bigler, R.; Trachsel, E.; Meier, R.; White, N.; Burkhard, J.; Sirois, L.; Tian, Q.; Angelaud, R.; Bachmann, S.; Zhang, H.; Gosselin, F. Org. Lett. 2023, 25, 3417–3422. ² Dotson, J.; van Dijk, L.; Timmerman, J.; Grosslight, S.; Walroth, R.; Püntener, K.; Gosselin, F.; Mack, K.; Sigman, M. *J. Am. Chem. Soc.* **2023**, 145, 110–121. ³ van Dijk, L.; Haas, B. C.; Lim, N.-K.; Clagg, K.; Dotson, J. J.; Treacy, S. M.; Piechowicz, K. A.; Roytman, V. A.; Zhang, H.; Toste, F. D.; Miller, S. J.; Gosselin, F.; Sigman, M. S. *J. Am. Chem. Soc.* **2023**, *145*, 20959–20967. ⁴ Haas, B. C.; Lim, N.-K.; Jermaks, J.; Gaster, E.; Guo, M. C.; Malig, T. C.; Werth, J.; Zhang, H.; Toste, F. D.; Gosselin, F.; Miller, S. J.; Sigman, M. S. *J. Am. Chem. Soc.* **2024**, *146*, 8536–8546. **Lou Charkoudian** Haverford College Haverford, PA, USA Mon June 23 at 11:10 AM # Unearthing the innerworkings of polyketide synthases by leaning into the unexplored and unexpected Microorganisms produce structurally complex and diverse molecules with a range of medicinally relevant properties. Our undergraduate research team is interested in understanding and harnessing this remarkable biochemical feat to gain sustainable access to molecules that can better human health. We are particularly interested in developing innovative strategies for studying two central components of type II polyketide synthases: acyl carrier proteins (ACPs) and ketosynthase - chain length factors (KS-CLFs). These proteins are critical to the biosynthesis of the polyaromatic class of polyketides that have a profound track record for serving as anticancer and antibiotic agents. In this talk, I will share how we used inferred evolutionary history to identify previously unexplored type II polyketide synthase biosynthetic gene clusters as a reservoir for ACPs and KS-CLFs with unique properties. I will also present how we have expanded access to ACPs in their active "holo" form through the discovery of new phosphopantetheinyl transferases and the strategic engineering of ACPs to confer their compatibility with traditionally phosphopantetheinyl transferases. Throughout the discovery process we have embraced unexpected results to develop novel site-specific vibrational spectroscopy and mechanistic crosslinking methodologies to study important, transient interactions of biosynthetic proteins. Finally, I will connect how this work has laid a foundation for our ongoing efforts to reconstitute the biosynthesis of type II polyketides *in vitro* and access 'new-to-nature' type II polyketides via combinatorial biosynthesis. We hope our research-- which spans organic chemistry, biochemistry and chemical education—will be of interest to a broad audience, and we welcome opportunities for collaboration with the NOS community. Neil K. Garg University of California, Los Angeles Los Angeles, CA, USA Mon June 23 at 6:30 PM ### Strained Intermediates and Chemical Education π -Bonds are typically associated with having well-defined arrangements of atoms. However, when the arrangement of atoms associated with these bonds becomes geometrically distorted due to ring constraints, heightened reactivity is seen. As a result, molecules with complex structures can be rapidly assembled from simple building blocks, typically using mild reaction conditions. This presentation will feature several geometrically-distorted transient intermediates recently studied in our laboratory. Cyclic allenes, cyclic 1,2,3-trienes, anti-Bredt olefins, and other unusual species will be discussed. In addition, this presentation will emphasize the importance of chemical education and showcase some of our efforts to promote organic chemistry education on a local and global scale. Morten Meldal University of Copenhagen Copenhagen, Denmark Mon June 23 at 7:30 PM ### Molecular Click Adventures: The intramolecular INAIC-click reaction The presentation will take you through the journey of the 2022 chemistry Nobel Prize. During the development solid phase organic combinatorial chemistry, we investigated a large variety of reactions for merger with peptide diversity. It was during this development we discovered the extreme Cu(1) catalysis of triazole formation from azides and alkynes leading to the CuAAC click reaction. We also attempted to use peptide-linked aldehydes as electrophiles for a range of external nucleophiles. However instead, we observed the entropy driven formation of hydroxylactams with further transformation into highly reactive N-acyliminium ions through reaction of the aldehydes with upstream amide bonds. This allowed for one of the richest collections of peptide-based heterocycle templates to be accessed through an acid catalyzed intramolecular N-acyliminium tandem cascade (INAIC) reaction of the aldehyde electrophile, first with one nucleophile, then with a second side chain or backbone nucleophile, both driven by entropy and with complete stereo-control.¹ In addition, carbamides could also be used as a first nucleophile leading to another range of novel molecular scaffolds through the INCIC reaction including heterocycles with
interesting fluorescent properties.² The fluorescence properties of the novel scaffolds could be developed through mild oxidation conditions and were environment dependable. For both reactions, the heterocycle formation could be performed either during or after assembly of the peptide precursors. - (1) Nielsen, T. E.; Meldal, M. Solid-phase intramolecular N-acyliminium Pictet-Spengler reactions as crossroads to scaffold diversity. *J. Org. Chem.* **2004**, *69* (11), 3765-3773. - (2) Diness, F.; Beyer, J.; Meldal, M. Solid-phase synthesis of tetrahydro-beta-carbolines and tetrahydroisoquinolines by stereoselective intramolecular N-carbamyliminium Pictet-Spengler reactions. *Chemistry* **2006**, *12* (31), 8056-8066. Karen L. Wooley Texas A&M University College Station, TX, USA Tue June 24 at 8:30 AM Sugar Plastics: An evolution of carbohydrate-derived synthetic polymers from nanoparticle targets to structural and morphological metamorphoses to commercial translation A primary interest in the Wooley laboratory is the production of functional polymers from renewable sources that are capable of reverting to those natural products once their purpose has been served. A long-standing focus has been the development of synthetic methodologies that transform sugars, nucleic acids, amino acids and other natural products into polymer materials. This approach allows for the production of functional polymers from renewable sources that are capable of reverting to those natural products once their purpose has been served. This holistic life cycle approach is of importance from the perspectives of sustainable sourcing of materials feedstocks, while creating mechanisms for breakdown of the polymer materials after useful lifetime is complete, and providing for biological and environmental resorption of breakdown products. The overall process impacts the need to address the increasing accumulation and associated hazards of plastic pollution from the environmental persistence of non-degradable, petrochemically-sourced polymer systems. Moreover, inherent diversities of natural products provide opportunities to expand the scopes, complexities and properties of polymers, by utilizing fundamental organic chemistry approaches. This presentation will provide historical perspectives of Wooley's journey toward sustainable polymer chemistry and its ultimate translation to carbohydrate-derived plastics commercially. It will also reflect upon the future of polymer materials, with particular emphasis on sourcing of feedstocks and in-built degradability and digestibility to address sustainability, and with interests in the design of next-generation plastics that meet important societal needs while allowing for dynamic reconfigurability and avoiding health, welfare, and environmental adversities. ### 49th National Organic Chemistry Symposium 2025 • Rensselaer Polytechnic Institute #### References - 1) Tran, D. K.; Braaksma, A. N.; Andras, A. M.; Boopathi, S. K.; Darensbourg, D. J.; Wooley, K. L. *J. Am. Chem. Soc.*, **2023**, 145, 18560-18567, DOI: 10.1021/jacs.3c05529. - 2) Shen, Y.; Leng, M.; Yang, Y.; Boopathi, S. K.; Sun, G.; Wooley, K. L. *J. Am. Chem. Soc.*, **2023**, 145(28), 15405-15413, DOI: 10.1021/jacs.3c03339. - 3) Shen, Y.; Yang, X.; Song, Y.; Tran, D. K.; Wang, H.; Wilson, J.; Dong, M.; Vazquez, M.; Sun, G.; Wooley, K. L. *JACS Au*, **2022**, 2(2), 515-521, DOI: 10.1021/jacsau.1c00545. - 4) Tran, D. K.; Rashad, A. Z.; Darensbourg, D. J.; Wooley, K. L. "Sustainable Synthesis of CO₂-derived Polycarbonates from d-Xylose", *Polym. Chem.*, **2021**, 12, 5271-5278, DOI: 10.1039/D1PY00784J. - 5) Song, Y.; Yang, X.; Shen, Y.; Dong, M.; Lin, Y.-N.; Hall, M. B.; Wooley, K. L. "Invoking side-chain functionality for the mediation of regioselectivity during ring-opening polymerization of glucose carbonates", *J. Am. Chem. Soc.*, **2020**, 142(40), 16974-16981, DOI: 10.1021/jacs.0c05610. - 6) Mikami, K.; Lonnecker, A. T.; Gustafson, T. P.; Zinnel, N. F.; Pai, P.-J.; Russell, D. H.; Wooley, K. L. "Polycarbonates Derived from Glucose *via* an Organocatalytic Approach", *J. Am. Chem. Soc.*, **2013**, *135*(18), 6826-6829, DOI: 10.1021/ja402319m. Richard A. Gross Rensselaer Polytechnic Institute Troy, NY, USA Tue June 24 at 9:30 AM ### Molecular editing of sophorolipids to interrogate structure-property relationships for diverse applications Sophorolipids (SLs) are glycolipid biosurfactants, produced by non-pathogenic yeasts such as Starmerella bombicola, in yields approaching 200 g/L. However, natural SLs have significant shortcomings such as the low water solubility of lactonic SLs (LSL) and the low surface activity of acidic SL (ASL). To improve upon nature's design for a wide range of applications, a suite of modified sophorolipids (MSL) was synthesized by integrating chemical and biocatalytic tool sets. SL n-alkyl esters comprise a group of MSLs obtained by the ring-opening of LSL. Micellar selfassembly behavior as a function of SL-ester chain length was studied. A series of molecularly edited SL-esters were evaluated at oil-water interfaces for their ability to reduce interfacial tension (IFT) and generate stable emulsions. For example, with almond oil, an increase in the *n*alkyl ester chain length from ethyl to hexyl resulted in a maximum %-decrease in the IFT from 86.1 to 95.3, respectively. Furthermore, the critical aggregation concentrations (CACs) decreased from 0.035 to 0.006 mg/mL with increase in the ester chain length from ethyl to n-decyl. The antimicrobial activity of modified SLs against Gram-positive human pathogens is a function of both the *n*-alkanol chain length and the degree acetylation at primary hydroxyl sites. Natural and modified SLs possess anti-cancer activity against a wide range of cancer cell lines. Comparison of the cytotoxicity of diacetate LSL and diacetate SL-ethyl ester on MDA-MB-231 breast cancer cells shows the former has higher cytotoxic efficacy that is similar to doxorubicin. However, improvements in the therapeutic index are needed for clinical use. Piscidins (P) are host defense peptides (HDPs) from fish. We demonstrate that, by combining SL-hexyl ester with subinhibitory concentration of P1 and P3 stimulates strong antimicrobial and anticancer synergy, potentiating a promising therapeutic window. Finally, we will discuss bioresorbable polymers formed by the ring-opening cross metathesis that converts natural LSL to poly(sophorolipids). Sidney Wilkerson-Hill University of North Carolina at Chapel Hill Chapel Hill, NC, USA Tue June 24 at 11:00 AM ### **Orphaned Cyclopropanes** Small molecules isolated from the flowers of *chrysanthemum cinerariifolium*, known as pyrethrins, have long been used as natural insecticides. Synthetic derivatives of these compounds (i.e., pyrethroids) are now used on metric ton scale in our daily lives to combat mosquitoes in residential areas and are a key pillar of vector control programs to combat malaria in developing countries. New pyrethroids with enhanced performance properties are desperately needed, however, to combat developing resistance in insects and to reduce off-target toxicity. The goal of the Hill group is to develop new reactions to rapidly obtain small molecule leads to novel pyrethroids. To accomplish these goals, my research group is developing new routes to alkyl cyclopropanes, a structural motif found in many pyrethroids, by 1) developing new reactions to functionalize strained rings; 2) obtaining a mechanistic understanding of Group 10 metal alkylidenes; and 3) discovering new reagents that serve as carbene precursors. Herein we disclose two projects focused on developing methods to obtain more highly strained carbocycles (strain energy > 27 kcal/mol). First, we have developed a method to obtain spiro[2.2]pentanes by reacting sulfone anions with alkylidenecyclopropanes (16 examples, 24–81% yield). When cyclopropylsulfone anions were reacted with styrenes, a formal C–H insertion reaction took place (14 examples, 24–79% yield). Separately, we have found NHC-Pd(0) alkylidenes are uniquely capable of producing bicyclo[2.1.0]pentanes (housanes) via palladacyclobutane intermediates (19 examples 37–89% yield). When phosphoramidite ligands are used to support Pd(0) carbenes, allylic C–H insertion products are obtained (8 examples, 51–88% yield). This unique divergent reactivity sets the stage for the synthesis of novel pyrethroids. # The Roger Adams Award in Organic Chemistry The Roger Adams Award in Organic Chemistry is sponsored jointly by the American Chemical Society (ACS), *Organic Reactions*[®], and *Organic Syntheses, Inc.* The award recognizes the distinguished career of Roger Adams, who played a vital role in each of these three organizations. He served as the Chairman of the Board of Directors and as the President of the American Chemical Society and he co-founded *Organic Syntheses* and *Organic Reactions*, serving as volume editor and editor-in-chief for each of the latter. The award was established in 1959 and is made biennially to an individual, without regard to nationality, for outstanding contributions to research in organic chemistry. The award consists of a gold medal and a \$25,000 honorarium. It is presented at the biennial National Organic Chemistry Symposium of the ACS Division of Organic Chemistry. The awardee is a featured lecturer in the program of the symposium, held this year at Rensselaer Polytechnic Institute in Troy, NY. The recipient of this year's award is Eric N. Jacobsen, the Sheldon Emery Professor of Chemistry at Harvard University, for outstanding contributions to the conceptualization, application, and mechanistic understanding of catalyst design for asymmetric synthesis. ### Roger Adams Awardees | 0 | | | |-------------------------------|---------------------------|------------------------------| | 1959 - Sir Derek H. R. Barton | 1983 - A. R. Battersby | 2007 - Samuel J. Danishefsky | | 1961 - Robert B. Woodward |
1985 - Donald J. Cram | 2009 - Andrew Streitwieser | | 1963 - Paul D. Bartlett | 1987 - Jerome A. Berson | 2011 - Robert H. Grubbs | | 1965 - Arthur C. Cope | 1989 - George A. Olah | 2013 - David A. Evans | | 1967 - John D. Roberts | 1991 - Gilbert J. Stork | 2015 - Larry E. Overman | | 1969 - Vladimir Prelog | 1993 - Elias J. Corey | 2017 - Hisashi Yamamoto | | 1971 - Herbert C. Brown | 1995 - Barry M. Trost | 2019 - Stephen L. Buchwald | | 1973 - Georg Wittig | 1997 - K. Barry Sharpless | 2021 - Kendall N. Houk | | 1975 - Rolf Huisgen | 1999 - Dieter Seebach | 2023 - Carolyn R. Bertozzi | | 1977 - William S. Johnson | 2001 - Ryoji Noyori | 2025 - Eric N. Jacobsen | | 1979 - Melvin S. Newman | 2003 - Albert Eschenmoser | | | 1981 - Nelson J. Leonard | 2005 - Jerrold Meinwald | | | | | | # 2025 Roger Adams Awardee Eric N. Jacobsen Harvard University Cambridge, MA, USA Tue June 24 at 7:00 PM ### Navigating Between the Worlds of Physical-Organic and Synthetic Chemistry Throughout my group's efforts over the past 37 years to discover new asymmetric catalytic reactions, we have had occasion to perform deep mechanistic analyses of several of the catalysts we have discovered, often using the enantioselectivity of the catalysts as a primary tool to obtain deep insight into critical transition states. The marriage of physical-organic and synthetic approaches led us to broadly useful concepts such as electronic tuning of chiral catalysts, homo- and hetero-catalytic cooperativity, noncovalent catalysis, and formal elucidation of catalyst generality. This lecture will provide an overview of some of our key findings, and then focus on our more recent efforts aimed at the elucidation and discovery of general catalytic systems based on new classes of chiral dual H-bond donors. Detailed case studies on the mechanism of enantioinduction with these catalysts highlight the cooperative features of these simple organic molecules that are both reminiscent and fundamentally different from those of enzymes. blue = catalytic "engine" red = secondary recognition elements **Daniel Romo**Baylor University Waco, TX, USA Wed June 25 at 8:30 AM Pharmacophore-Directed Retrosynthesis: Merging Total Synthesis with SAR Gathering to Inform Mechanism of Action Studies of Natural Products The complex architecture and often potent bioactivity of natural products frequently serve as an embarkation point for the exploration of biologically-relevant chemical space. Total synthesis followed by derivative synthesis has historically enabled a deeper understanding of structure-activity relationships (SAR) for natural product classes. However, synthetic strategies toward a natural product are not always guided by hypotheses regarding minimal structural features required for bioactivity, i.e. a proposed 'pharmacophore'. Inspired by Wender's ideas of function-oriented synthesis, we recently began approaching the chemical synthesis of natural products through the lens of what we call pharmacophore-directed retrosynthesis (PDR). In this strategy, a hypothesized, minimal 'pharmacophore' of a natural product with unknown cellular target is selected as an early synthetic target and sequential increases in complexity toward the natural product guide our retrosynthetic analysis. Importantly, this approach has led to the identification of simplified natural product congeners retaining bioactivity while also informing attachment points for the synthesis of cellular probes for cellular target identification. In a recent variation of this strategy toward curromycin A, we recognized that alkynes could be used as both synthetic intermediates and proteomic probes enabling cellular target identification of increasingly complex curromycin A congeners. To date, we have applied PDR to gracilin A and rameswaralide and are currently applying this strategy to several natural products including ophiobolin A, curromycin A, salarin C and talaromynoid H. Selected stories of applying PDR to bioactive natural products, bolstered by several enriching and fruitful biological collaborations, will be presented. Amanda E. Hargrove University of Toronto Mississauga, Ontario, Canada Wed June 25 at 9:30 AM ### Strategies to modulate the conformation and function of RNA with small molecules Small molecules offer a unique opportunity to target structural and regulatory elements in therapeutically relevant RNAs, but understanding functional selectivity has been a recurrent challenge in small molecule:RNA recognition. RNAs offer less differentiating chemical functionality than proteins and sample multiple conformations that can each impact function. We have used organic synthesis, machine learning and a variety of biophysical and cell-based assays to reveal patterns in the chemical and structural properties of bioactive RNA ligands as well as RNA topological space privileged for differentiation. We have applied these principles to several disease-relevant systems. We have tuned diiminazene-based small molecules to functionally modulate different RNA tertiary structures in the oncogenic long noncoding RNA MALAT1, leading to either monofunctional degraders or tailored manipulation of RNA:protein interactions. We have also developed RNA-targeted antivirals for enterovirus (EV71) and SARS-CoV-2, revealing a novel allosteric mechanism of small molecule: RNA targeting. Heather D. Maynard University of California, Los Angeles Los Angeles, CA, USA Wed June 25 at 11:00 AM ### Responsive Conjugates for Drug Delivery This talk will focus on responsive peptide prodrugs, polymer conjugates, and polymeric nanoparticles to enhance the therapeutic efficacy of protein and small molecule therapeutics. The rational design, synthesis, and preclinical evaluation of these materials will be discussed. In particular, materials that respond to enzymes, chemical triggers and reductive pH will be described, with a focus on therapeutics for diabetes and pain management. Emphasis will be placed on the design and synthesis of linkers for this purpose (Figure 1). In addition, the synthesis of depside analogs will be presented, along with their antimicrobial activity. **Figure 1.** Hydroxybenzylammonium compounds for reversible protein conjugation (modified from *JACS*, **2022**, *144*, 6050 and *Chem. Sci.* **2024**, *15*, 10448) Jennifer Allen Amgen Ventura County, CA, USA Wed June 25 at 6:30 PM ### A Day in The Life of a Medicinal Chemist - Discovery of Sotorasib KRAS is one of the most frequently mutated oncogenes in human cancer. Despite more than three decades of research, indirect approaches targeting KRAS-mutant cancers have largely failed to show clinical benefit, and direct approaches have been stymied by the apparently 'undruggable' nature of KRAS. I'll describe efforts at Amgen to identify cysteine-reactive molecules capable of selectively inhibiting a prevalent KRAS mutation, KRASG12C. These efforts leveraged iterative screening and structural biology studies, property-based optimization, and careful process engineering to ultimately deliver a highly potent, selective, and well-tolerated inhibitor of KRASG12C: LUMAKRAS® (sotorasib). David A. Leigh University of Manchester Manchester, United Kingdom For a musical introduction, see '*Nanobot*': https://bit.ly/2M5Zwdl Wed June 25 at 7:30 PM ### **Giving Chemistry Direction** Over the last three decades examples of synthetic molecular machines and motors¹ have been developed,² albeit they are primitive by biological standards. Such molecules are best designed to work through statistical mechanisms.³ In a manner reminiscent of Maxwell's Demon,⁴ random thermal motion is rectified through ratchet mechanisms,^{3–10} giving chemistry direction. It is increasingly being recognised that similar concepts can be applied to other chemical exchange processes.¹¹ Ratchet mechanisms—effectively chemical engines¹² in which catalysis^{5,7–9} of 'fuel' to 'waste' is used to drive another chemical process—can cause directional impetus in what are otherwise stochastic systems, including endergonic chemical reactions.¹³ This is ushering in a new era of non-equilibrium chemistry, providing fundamental advances in functional molecule design and the first examples of molecular robotics,^{14,15} overturning existing dogma and offering fresh insights into biology and molecular nanotechnology. [1] The Nobel Prize in Chemistry 2016–Advanced Information. Nobelprize.org. Nobel Media AB 2014. Web. 6 Oct, 2016, http://www.nobelprize.org/nobel prizes/chemistry/laureates/2016/advanced.html. [2] "Rise of the molecular machines", Angew. Chem. Int. Ed. 54, 10080 (2015). [3] "Molecular ratchets and kinetic asymmetry: Giving chemistry direction", Angew. Chem. Int. Ed. 63, e202400495 (2024). [4] "A molecular information ratchet", Nature 445, 523 (2007). [5] "An autonomous chemically fuelled small-molecule motor", Nature 534, 235 (2016). [6] "Rotary and linear molecular motors driven by pulses of a chemical fuel", Science 358, 340 (2017). [7] "A catalysis-driven artificial molecular pump", Nature 594, 529 (2021). [8] "Autonomous fuelled directional rotation about a covalent single bond", Nature 604, 80 (2022). [9] "Transducing chemical energy through catalysis by an artificial molecular motor", Nature 637, 594 (2025). [10] "A tape-reading molecular ratchet", Nature 612, 78 (2022). [11] "Design, synthesis and operation of small molecules that walk along tracks", J. Am. Chem. Soc. 132, 16134 (2010). [12] "Chemical engines: Driving systems away from equilibrium through catalyst reaction cycles", Nat. Nanotechnol. 16, 1057 (2021). [13] "Ratcheting synthesis", Nat. Rev. Chem. 8, 8 (2024). [14] "Sequence-specific peptide synthesis by an artificial small-molecule machine", Science 339, 189 (2013). [15] "Stereodivergent synthesis with a programmable molecular machine", Nature 549, 374 (2017). Melanie Sanford University of Michigan Ann Arbor, MI, USA Thurs June 26 at 8:30 AM
Diverse Synthetic Approaches for Carbon-Fluorine Bond Formation This presentation will discuss recent methods development for C-F bond formation, including thermal, electrochemical, and transition metal catalyzed reactions involving diverse precursors with an emphasis on reaction design and mechanistic considerations. **Keary M. Engle**The Scripps Research Institute La Jolla, CA, USA Thurs June 26 at 9:30 AM ### Advances in Programmed Alkene Functionalization Alkenes are inexpensive and widely available feedstocks derived from petroleum or renewable resources. The Engle lab focuses on developing novel catalytic alkene functionalization reactions that selectively introduce functional groups at both alkenyl carbon atoms in a controlled manner. This approach allows the direct transformation of simple starting materials into densely functionalized, stereochemically defined products, which can then serve as building blocks for complex target molecules, including important pharmaceutical agents. This talk will highlight the evolution of strategies across different metals and redox manifolds, ranging from directing auxiliaries to native and transient directing groups, and eventually to non-directed approaches. Mechanistic studies have uncovered how interactions between substrates, metals, and ligands enable these transformations, informing the design of new catalysts through an iterative feedback loop. Craig M. Crews Yale University New Haven, CT, USA Thurs June 26 at 11:00 AM #### Developing Novel Induced Proximity Therapeutic Modalities: PROTACs and Beyond The Crews lab uses 'Applied Chemical Biology' to develop novel therapeutic modalities. Enzyme inhibition has proven to be a successful paradigm for pharmaceutical development, however, it has several limitations. Alternatively, for the past 20+ years, my lab has focused on developing Proteolysis Targeting Chimera (PROTAC), a new 'controlled proteolysis' technology that overcomes the limitations of the current inhibitor pharmacological paradigm. Based on an 'Event-driven' paradigm, PROTACs offer a novel, catalytic mechanism to irreversibly inhibit protein function, namely, the intracellular destruction of target proteins. This approach employs heterobifunctional molecules capable of recruiting target proteins to the cellular quality control machinery, thus leading to their degradation. We have demonstrated the ability to degrade a wide variety of targets (kinases, transcription factors, epigenetic readers) with PROTACs at picomolar concentrations. Moreover, the PROTAC technology has been demonstrated with multiple E3 ubiquitin ligases and now multiple PROTAC-based drug candidates are being tested in clinical trials for both oncology and non-oncology indications. # Afternoon Programming: MONDAY June 23 These sessions will be held in the Shirley Ann Jackson, Ph.D. Center for Biotechnology and Interdisciplinary Studies (CBIS) Isermann Auditorium. ### 1:30 - 2:30 PM Presider: Geetu Sharma, RPI Phaedria Marie St. Hilaire P M Consulting Cofounder of ProWoc (https://prowoc.org) Copenhagen, Denmark #### Inclusive Leadership and DEI as a means to Excellence in Science Despite being under fire in recent years, it is well established that diversity and inclusion in an organization leads to superior results and greater collective excellence, provided the teams are well managed. During this talk, I will delve into the unique challenges faced by women and other members of underrepresented groups in the workplace as they ascend to senior roles. Participants will obtain an analysis of the current landscape, focusing on issues such as unconscious and cultural biases, microaggressions, and systemic barriers that often impede progress. We will discuss the role of inclusive leadership in promoting inclusion and present other strategies that successfully promote a more equitable work environment where everyone feels valued, respected, and empowered to contribute their unique perspectives. #### 2:45 – 3:45 PM ### Primarily Undergraduate Institution (PUI) Career Panel Rick Broene, Bowdoin; Lou Charkoudian, Haverford; Megan Jacobson, Southern Idaho; Jim Vyvyan, Western Washington U. Come learn about teaching and research at PUIs. The panel has broad experience from institutions that range from selective liberal arts colleges, to public universities, to community colleges. # Afternoon Programming: WEDNESDAY June 25 These sessions will be held in the Shirley Ann Jackson, Ph.D. Center for Biotechnology and Interdisciplinary Studies (CBIS) Isermann Auditorium. #### 1:00 – 2:25 PM ### **Undergraduate Context Session** Ron Brisbois, *Macalester College*Jeff Katz, *Colby College*Sarah Tasker, *Franklin & Marshall College* About 20% of the attendees at this year's National Organic Symposium are undergraduate chemists (~90 people). Although undergraduate participants can most often grasp the overarching issue(s) of seminar and poster presentations, their backgrounds do not always permit them to instantaneously register understanding of such things as named reactions and experimental techniques invoked. This Undergraduate Context Session provides a collegial venue in which students can ask the kinds of clarifying questions—from simple definitional aspects to reaction mechanisms to spectroscopic methods to people and chemical history—they would not feel comfortable asking from the floor of an NOS session. The Context Session is moderated by PUI faculty who solicit questions from undergraduates in attendance. In an effort to enhance connections between the undergraduates attending the Context Session, the first opportunity to "go to the board" and provide an explanation to any question is offered to undergraduates with background in those specific areas. The faculty moderators, and other advanced students and faculty who are present, weigh in with further comments only after undergraduates have had the chance to edify each other as a function of their different backgrounds. We welcome and encourage participation from undergraduates, graduate students, postdoctoral researchers, scientists from industry, and faculty at all levels. #### 2:30 - 3:30 PM ### **Industry Career Panel** Jen Allen, Amgen; Jacqui Hoffman, Pfizer; Stephen Lathrop AbbVie; Daniel Zell, Genentech Come and learn about careers in industry. The panel represents pharmaceutical companies but welcomes questions concerning any industrial career path. ## **NOS Travel Awards** The following 50 attendees are recognized for their achievements with a Division of Organic Chemistry Travel Award to the 2025 NOS. Special thanks to Jon D. Rainier for coordinating the travel award process. #### **Undergraduate Student Travel Award Recipients** Brady Birkenholtz Central College Nikolas Bodnar University of Connecticut Rachel Brozenec Illinois State University Jacob Bundesmann Worcester Polytechnic Institute Nathan Coddington University of California, Riverside Quentin Ervin Illinois State University Emma Fallon Albertus Magnus College Dagoberto Grijalva-Flores University of Colorado, Denver Emma Horton Ball State University Katelynn McPhee Purdue University - Fort Wayne Minh Tran Lawrence University Rocco Vargas Southeastern University ### **PUI Faculty Travel Award Recipients** Meredith Borden Trinity University Ronald Brisbois Macalester College Todd Eckroat Pennsylvania State University, Behrend Michael Gesinski Lawrence University Yu Liu Northern Michigan University Seann Mulcahy Providence College Keith Reber Towson University Erica Schultz Lake Forest College Jay Wackerly Central College Sarah Zingales United States Coast Guard Academy # NOS Travel Awards (continued) #### **Graduate Student Travel Award Recipients** Laila Aiad University of Minnesota Joy Alende Illinois State University Kevin Blanco-Herrero University of California, Davis Suman Das Indiana University Serena DiLiberti University of Minnesota Vivek Gangadharan Pillai University of Rochester Constantinos Gofas California State Polytechnic University, Pomona Partha Hazra Indiana University Cheng-En Hsieh University of California, Davis Emily Jimenez University of Michigan Zhao Liu San Diego State University Keith McGee University of Colorado, Denver Hannah Mulliner Maryam Nazari Joseph Nsabaah Tolulope Oluborode Masoumeh Rahim Jagrut Atul Shah University of Minnesota Illinois State University University University of Memphis Stony Brook University Indiana University Darshika Singh Michigan State University Griffin Stewart Northwestern University Olivia Taylor University of California, Riverside Po-Sen Tseng University of Georgia Zoe Wachtel University of Michigan Jason Wu Cornell University Wen Xiu Purdue University Sara Zerangnasrabad Auburn University ## **Poster Sessions** The poster sessions will be held nightly in EMPAC Studio 1 and Studio 2. Four poster awards will be selected by the judges each night. These awards will be given to the recipients each morning of the symposium. Special thanks to Annabel Ansel, Andrew Freiburger, and Brian Myers for coordinating the poster submission and scheduling and to all of the poster judges. The poster sessions are sponsored by ACS publications and Wiley-VCH publications. S= Sunday; M = Monday; T = Tuesday; W = Wednesday | Poster # | Poster Title | Authors (*presenting) | Affiliation | |------------|--|---|--| | S 1 | 1,2-Diamination of alkenes via 1,3-
dipolar
cycloaddition with NNN
compounds | Setyareh Saryazdi,
Ugochukwu Odagwe,
Robert B. Grossman* | University of Kentucky | | S2 | A Green Update to Benadryl Synthesis
in the Organic Teaching Lab | 3/c Isaac Adkins, 3/c Laurel Davis, 3/c Liliana Feyk, 1/c Stone Grant, 3/c Katie Kogler, 2/c Jayden Lomax, 3/c Alexander McKinnon, 3/c Mackenzie Murnane, 3/c Riley Ritter, 3/c Lily Rivera, 3/c Gabrielle Sanchez, 3/c Mei Lei Urbanski, 2/c Hannah Van Cise, 3/c Lauren Wong, Dr. Sarah Zingales* | United States Coast Guard
Academy | | S3 | A Kinetic Switch for Accessing
Halogenated Medium-Sized Rings or
Spiroketals | Nicholas Wills, Ankush
Chakraborty, JiaoJiao Wang
Babak Borhan | Michigan State University | | S4 | A Three-Step Method for the
Preparation of N-Substituted 3,4-
Dihydroisoquinolin-1(2H)-ones and
Heteroaryl-Fused 3,4-Dihydropyridin-
2(1H)-ones from 2-Bromobenzoate
Precursors | Ethan E. Cramer*, Emily E.
Freeman, Randy Jackson,
Jessica Luo, Rajen
Somwaru, Alex Sons, Andy
Bean, Ronald N. Buckle and
R. Jason Herr | Medicinal Chemistry
Department, Curia
Global, Inc. | | S5 | A Unified Approach to Vicinal
Functionality | Justin J. Chang*, Munnu
Kumar, Misato Okatomo,
Emily Sophia Vergara-
Pimentel, Daniel K. Kim | Temple University | | S6 | Applications of Photocatalyst-Induced
Solvent Activation in N-
Demethylation | Lindsay Repka*, Natalie
Pinerio, Bruck Setu, Kailey
Gagne, Abdul Abubakari,
Angel De Pacina, Ariane
Goldin | Middlebury College | |------------|---|---|--| | S7 | Bench-stable Co(III) Complexes as a
Platform for Carbonyl Additions and
Natural Product Synthesis | Shayne M. Weierbach*,
Cylah A. Bruno, Olivia A.
Brown, Jean M. Bray, Karen
Vargas, and Kyle M.
Lambert | Old Dominion University,
Department of Chemistry
and Biochemistry | | S 8 | Bifunctional Organocatalysts for
Amide Bond Formation | Kimberly A. W. Reid 1,
Randy Sutio 1, Jack M.
Ranani 1, Brennah E. Slaney
1, Christophe Allais 2,
Johnny W. Lee 2, and
Christopher Sandford* 1,3 | 1. Dartmouth College; 2.
Pfizer Chemical Research
and Development; 3.
University of Texas at San
Antonio | | S 9 | Boron Enabled Interrupted de mayo
reaction via Energy Transfer | Neetu Sharma*, Evan piper,
Yanyao Liu, Kevin Brown | Indiana University of
Bloomington | | S10 | Boron-directed sp3 C-H Activation
Reaction | Partha S Hazra*, Makaya
Robinson, M. Kevin Brown | Indiana University-
Bloomington | | S11 | Building up Starting material Towards
Novel Rearrangement. | Joseph Nsabaah*, Andy
Mitchell | Illinois State University | | S12 | Chemoselective Electrochemical
Coupling of Thioethers and Primary
Amines for Accessing Sulfilimines and
Sulfoximines | Sukwoo Lee*, Jonas Rein,
Evan Weingarten, Song Lin | Cornell University | | S13 | Cycloisomerization of N-allyl
Bicyclobutane Amides | Dilhumar Uyghur, Karis
Texidor, Noah Wiese,
Lindsey O. Davis*, Mandy
Green, Matteo Borgini | Augusta University | | S14 | Withdrawn | | | | S15 | Dearomative Intramolecular (4+3)
Cycloadditions of Epoxy Enolsilanes
with Benzene Derivatives | Chan Long Ying*, Pauline
Chiu | The University of Hong
Kong | | S16 | Deconstructive Alcohol
Functionalization via Titanium
Photocatalysis | Jagrut A. Shah 1*, Ashley
Lojko 1, Zilu Tang 1, Yetong
Lin 1, Emma Scher 1,
Celeste Barefoot 2, and
Jeffrey M. Lipshultz 1 | 1. Dept of Chemistry, Stony Brook University, NY; 2. Department of Chemistry & Biochemistry, University of North Carolina Wilmington, Wilmington, North Carolina | |-----|--|--|--| | S17 | Deoxyradiofluorination of Phenols
with a Bespoke Difluoromethoxy
Nucleofuge Enabled by Organic
Photoredox Catalysis | Maulik Mungalpara*,
Xuedan Wu, Xinrui Ma,
David Nicewicz, Zibo Li | The University of North
Carolina at Chapel Hill | | S18 | Development of Gas-Releasing
Molecules Using a Thiol Carrier | Taylor Weiss*, Henry
Tavens*, Tatyana Ulman*,
Dr. Sarah Tasker | Franklin & Marshall
College | | S19 | Development of Nickel Catalyzed
Reductive Cross Coupling Reactions
of Carbonyls with Electrophiles | Anika Monga*, Jarrod
Stanley*, Chandana Sunil*,
Elizabeth Jaekle, Yuriko
Fujisato, John Montgomery | University of Michigan | | S20 | Development of the Intermolecular
halo-Nazarov Four-Component
Coupling Cascade | Michael A Piacquadio*, Benjamin Kozloff, Connor Holt, Georgios Alachouzos, Jackson J Hernandez, Alison Frontier | University of Rochester | | S21 | Direct Acylation of Aryl and Alkyl
Bromides via Nickel-Catalyzed
Aldehyde C–H Functionalization | Sean Calvert 1*, Leo
Vermaak 2*, Austin
Ventura 3, John
Montgomery | University of Michigan | | S22 | Electrochemical Activation of α - Carbonyl Alkoxyamines for Direct Substitution | John Putziger*, Song Lin | Cornell University | | S23 | Electrochemical Approaches to
Reductive Transformation in Organic
Synthesis | Yihuan Lai*, Arjun Halder,
Jaehwan Kim, Thomas J.
Hicks, Phillip J. Milner | Cornell University | | S24 | Embedded-Base Electrophiles for
Decarbonylative C–H
Functionalization | Robert Wolesensky*,
Frances Gu, Brooke
Dunnery, Melanie Sanford | University of Michigan | | S25 | Withdrawn | | | | S26 | Exploiting new Chemical Pathways
for the Synthesis of Diazepines and
Benzodiazepines | Dominic Rivera, Alyssa
Singer, Adam Wyatt, Jenna
Doran, Amari Howard | Rowan University | |-----|---|--|--| | S27 | Formation of Derivatized
Benzocyclobutenes via Palladium-
Catalyzed Alkene Difunctionalization | Robert L. King*, Calliope A.
Cutchins, Colin J. Priest,
John P. Wolfe | University of Michigan | | S28 | HFIP-Mediated Retro-Henry Reaction of trans-beta-Nitrostyrenes | Olivia Gottschall*, Xiaoran
Lui, Juan G. Navea, Jessada
Mahattananchai | Skidmore College | | S29 | Intramolecular PCET of α -Keto Acids: Synthesis of Trifluoromethyl Ketones via Ketyl Radicals | Rifat N. Nabi*, Kimberly A.
Jarquin, Anupam
Karmakar, Kyle E. Brunner,
Daniel K. Kim. | Temple University | | S30 | Investigations into a Method for
Catalyst-Controlled, Site-Selective
Olefination and Amination of Indoles | Thomas M. Reimer*, Kuang
Gu, Brandon L. Ashfeld | University of Notre Dame | | S31 | LMCT Catalysis with Discrete,
Tunable Titanium Complexes for
Selective Radical Chemistry | Yetong Lin, Ashley Lojko,
Jagrut A. Shah, Zilu Tang,
Emma Scher, Noah
Schwartzapfel, and Jeffrey
M. Lipshultz | Department of Chemistry,
Stony Brook University | | S32 | Mechanistic Investigation of
Pyridoxal-Inspired Photochemical
Decarboxylation of Unprotected
Amino Acids | Dr. Dong-Hang Tan,
Agniva Das, Vincent
Huang, Dr. Timothy D.
Schoch, Abubakar Lawal
Mohammed, Prof. Jeffrey
M. Lipshultz | Department of Chemistry
and Institute of Chemical
Biology and Drug
Discovery, Stony Brook
University | | S33 | Mechanochemical Synthesis of enamino carbonyl compounds: Ball milling synthesis. | Maqhawe Ndlovu*, Diego
Fernandez, Tej Beniwal, Jay
Patel, Akhil Pinnapareddy,
Nathan Kotchkin, Jayden
Hristov, Joshua Soranno,
Syed R Hussaini. | University of Tulsa | | S34 | Metal-Free Addition of Alkyl
Bromides to Access 3,3-Disubstituted
Quinoxalinones Enabled by Visible
Light Photoredox Catalysis | David Hunter, Jennie Liao,
Cheng Wang, Ugochinyere
Nancy Oloyede, Joseph
McLaughlin, Abdellatif El
Marrouni | Merck and Co. | | S35 | Metallodioxirane Catalysis for the
Functionalization of Activated
Alkenes | Alyssa N. Singer*, Steven J.
Finneran, Erin L. Doran,
Jenna M. Doran, Amari M.
Howard, Dominic A. Rivera | Rowan University | |-----|---|---|--| | S36 | Microdroplet Chemistry Facilitates
Unique Short-chain RNA Oligomer
Formation | Samantha E. Pryor* 1,2;
Vincent S. Riggi 1,2;
Morgan F. Schaller 1; Jacob
T. Shelley 1,3 | 1. Dept. of Earth & Environmental Sciences, Rensselaer Polytechnic Institute; 2. Rensselaer Astrobiology Research and Education Center, Rensselaer Polytechnic Institute; 3. Dept. of Chemistry and
Chemical Biology, Rensselaer Polytechnic Institute | | S37 | Mild and Efficient Cs ₂ CO ₃ -Promoted
Synthesis of Silyl (Dithio-)Carbonates
and Silyl (Dithio-)Carbamates | Phillip Gray III*, Colby
Lavigne, Ralph
Salvatore PhD | Ralph Salvatore-
University of South
Florida, Southeastern
University, Phillip Gray
III- Southeastern
University, Colby
Lavigne- Southeastern
University | | S38 | N–O Tether-Enabled Net
Intermolecular [5+2] Cycloaddition: A
Preliminary Study | Tolulope Oluborode*, Andy
Mitchell | Illinois State University | | S39 | New developments in LMCT photocatalysis utilizing discrete, stable titanium complexes | Ashley Lojko*, Jagrut Shah,
Yetong Lin, Emma Scher,
Zongle Wei, and Jeffrey
Lipshultz | Stony Brook University | | S40 | Nickel-Catalyzed Oxidative Cross-
Dehydrogenative Coupling | Ammar F. Ibrahim*, Austin
M. Ventura*, Yuriko H.
Fujisato*, Paul M.
Zimmerman, John
Montgomery | University of Michigan | | S41 | Palladium-Catalyzed Alkene
Difunctionalization Reactions for the
Synthesis of Bioactive Small Molecules | Siqi Dong*, Matthew
Culberson, Andrew Cruz,
Anaise Thomas, John Wolfe | University of Michigan | | S42 | Phenpropyl and Phenethylamine
Synthesis and Evaluation of SERT
Inhibition | Evelyn S. Galgano* and
Timothy J. Barker | College of Charleston | | S43 | Phosphorylation: Ideal Reaction for
Development of Chemoselective
Catalysts and Novel Reagents | Bianca Sculimbrene*,
Kathleen Stathoulopoulos,
Audrey Ihlefeld, Nora
Brink, Ella Lynch-Bartek,
Abigail Kellogg, Stephen
Meier | College of the Holy Cross | |-----|---|--|---| | S44 | Photocatalysis for Polymer Synthesis | Neely Burns, Jacelyn
Escovar, Thomas
McPherson, Hannah Paul,
Meredith A. Borden* | Department of Chemistry,
Trinity University | | S45 | Photocatalytic Alkene
Hydrofunctionalization Utilizing
Modular Acridine-Lewis Acid
Complexes | Emily Jimenez*, Daniel S.
Brandes, Matthew R. Lasky,
Olusayo J. Ogunyemia, Siqi
Dong, Theodore Goodson
III, Melanie S. Sanford | University of Michigan | | S46 | Photocatalytic C(sp3)–H
Functionalization Enabled by Ligand-
to-Metal Charge Transfer | Jun Luo, Jujhar Singh,
Yongming Deng | Department of Chemistry
and Chemical Biology,
Indiana University
Indianapolis,
Indianapolis, Indiana
46202, U.S. | | S47 | Photocatalytic Iminyl Radical
Cyclization for the Synthesis of
Quinazolinones | Erin E. Gray*, Neissa
Usanase, Jensen L. Rocha,
Joyce Yoo, Hanbich Lee,
Hannah A. Spencer,
Mohammed Albotabeekh,
Janeth A. Sandoval | Washington and Lee
University | | S48 | Preparation of N-Protected Benzylic
Amines by Nickel/Photoredox Dual
Catalysis: A Program Developed for
the Education and Training of
Summer Research Interns | Emily Holman, Marwah
Albaker, Alexi Martin and
R. Jason Herr* | Medicinal Chemistry
Department, Curia
Global, Inc. | | S49 | Radical fluorination: Method development and mechanistic insights | Jessica Bluitt*, Mathew
Vetticatt | Binghamton University | | S50 | Radical innovations using electricity for site-selective reactions | Eva Maria Alvarez 1*, Griffin Stewart 1, Jinxiao Li 1, Chris Rapala 1, Mohammed Ullah 1, Remy Lalisse 2, Osvaldo Gutierrez 2, Christian Malapit 1 | 1.Northwestern
University; 2. University
of California, Los Angeles | | S51 | Robust Aluminium-Based Metal-
Organic Frameworks Facilitate
Photochemical Fluoroalkylations
Using Fluorinated Gases | Jiachen He 1*, Joharimanitra Randrianandraina 2, Husain Adamji 3, Valerie Chang 1, Yihuan Lai 1, Heather J. Kulik 3, Jung- Hoon Lee 2, Phillip J. Milner 1 | Cornell university | |-----|--|--|--| | S52 | Semi-Reduction of Benzamides to
Imines Using a Mixed Aluminum
Hydride Reagent | Keith P. Reber*, Neechi
Okwor, Grace Vaillancourt,
Jennafer Buckshaw | Towson University | | S53 | Solvent-Free Transfer Hydrogenation
by a Hantzsch Amide | Anthony C. O'Donnell, Allie E. Marks, Y Dang, Dylan M. Brandt, Robert Palkovitz, Jonathan Liu, Alisa Wang, Audrey Kinney, Jackie Guo, Bailey Sparks, Scott A. Van Arman* | Franklin & Marshall
College | | S54 | Strategies for the synthesis of divinyl amines | Adam J. Wyatt*, Dominic
Rivera, Alyssa Singer, Jenna
Doran, Amari Howard,
Gustavo Moura-Letts | Rowan University | | S55 | Surprising rearrangement of pyrone-
Amides | Joy Alende*, John Goodell,
Andy Mitchell | Illinois State University | | S56 | Synthesis and Reactivity of Mucononitriles | Liam Murphy*, Adam
Zahara, Sidney Wilkerson-
Hill | The University of North
Carolina at Chapel Hill | | S57 | Synthesis of Benzooxazepines from Oxaziridines and Dipolaraphiles | Amari M. Howard*, James
L. Stroud, Dominic A.
Rivera, Gustavo Moura-
Letts | Rowan University | | S58 | Synthesis of Phenpropylamines | Hannah E. Ford* and
Timothy J. Barker | College of Charleston | | S59 | Synthesis of Quaternary
Homobenzaldehydes by Zinc-
Mediated Palladium-Catalyzed a-
Arylation of Silyl Enol Ethers | Angelina C. Graf*, Liv R.
Alleyne, Ashlynn B. Van
Lare, Ritter V. Amsbaugh,
and Benjamin J. Stokes | Santa Clara University | | S60 | Synthesis of Thioethers via a
Hypervalent Iodine-Catalyzed Thiol-
Ene Reaction | Zarine Gidwaney*, Sachin
Balasubramanian*,
Stephanie De Jesus*, Dr.
Sarah Tasker | Franklin & Marshall
College | |-----|--|---|--| | S61 | Synthesizing Materials for Research
on (5+2) Cycloadditions | Rachel Brozenec*, Andy
Mitchell | Illinois State University | | S62 | Sythesis of cyclopropanes using alkylsulfones as carbene equivalents | Charles R. Teeples*, J. Douglas Johnson, J. Cabell Metts, Timothy A. Lewis, Charlotte A. Ridgway, Sidney M. Wilkerson-Hill | The University of North
Carolina at Chapel Hill | | S63 | The Base-Mediated Rearrangement | Dr. Andy Mitchell, Quentin
Ervin | Illinois State University | | S64 | The Reductive halo-Nazarov cyclization for the construction of substituted halo-cyclopentenes. | Benjamin Kozloff*, Michael
Piacquadio, Georgios
Alachouzos, Alison Frontier | University of Rochester | | S65 | Transition Metal-Free Methods to
Make C-N and C-B Bonds | Alexis Z. Hamilton, Samson
W. Hill, Ben P. Cerkovnik,
Katilin M. Ervine, Daniel J.
Nasrallah* | Roanoke College | | S66 | Trifluoromethylborylation of
Unactivated Alkenes | Hieu H. Nguyen*, Silas P.
Cook | Indiana University,
Bloomington | | S67 | Updates and Improvements to the
Wagner-Jauregg Reaction | Samuel S. Tartakoff* | St. Lawrence University | | S68 | Visible Light Mediated Alkene
Functionalization | Samyadev Giri, Ramesh
Giri | The Pennsylvania State
University | | S69 | Wireless Electrosynthesis using Light-
Harvesting Microelectronic Devices | Bartosz Górski1+, Jonas
Rein 1+*, Samantha Norris
2, Yanxin Ji 2, Paul L.
McEuen 2, Song Lin 1
+Contributed equally and
listed in an alphabetical
order | 1. Department of
Chemistry and Chemical
Biology, Cornell
University; 2. Department
of Physics, Cornell
University | | S70 | Moved to Wednesday | | | | M1 | [13]Graphanyl-X: Expanding the 3D
Saturate Chemical Space | Alex K.H. Chu*, Antonio
Rizzo, Pauline Chiu | The University of Hong
Kong | | M2 | [2+2] Cycloadditions of Strained
Cyclic Allenes | Allison T. Hands*, Noah W.
Gilbertson, Matthew S.
McVeigh, Jacob P.
Sorrentino, and Neil K.
Garg | University of California,
Los Angeles | |-----|--|---|---| | М3 | 7-Membered Cyclic Allenes as
Building Blocks for Heterocycle
Synthesis | Georgia M. Scherer*,
Benjamin A. Janda, Lauren
Q. Van Auken, and Neil K.
Garg | University of California,
Los Angeles | | M4 | A Divergent C–H Functionalization
Approach Toward Delavatine A and
Constitutional Isomers | Emily Y. Fok 1*, Alexander
Kremsmair 1, Silvia Rizzo 1,
Ambre Carpentier 2, Robert
Paton 2, Richmond Sarpong | 1. University of California,
Berkeley; 2. Colorado
State University | | M5 | A Solution to the anti-Bredt Olefin
Synthesis Problem | Zach G. Walters*, Luca
McDermott, Sarah A.
French, Allison M. Clark,
Jiaming Ding, Andrew V.
Kelleghen, K. N. Houk, and
Neil K. Garg | University of California,
Los Angeles | | M6 | Asymmetric Cyclopropanation on
Dirhodium (II,II) Paddlewheel
Complexes
with Tethered Axially
Coordinated Chiral Ligands | Ernest Bennin 1*, Ryan
Oconnell 2 | 1. The University of
Tennessee; 2. The
University of Notre Dame | | M7 | Asymmetric Mannich Reactions
Catalyzed by Configurationally Stable
Half-Sandwich Ruthenium Complexes | Gabriel Negrao de Morais,
Shuming Chen* | Oberlin College | | M8 | Asymmetric Rh-Catalyzed Synthesis of Dihydronicotinamides | Sara Zerangnasrabad*,
Rashad Karimov | Auburn University | | M9 | Asymmetric Total Synthesis of (–)-
Verrucarol | John F. McCleerey Jr.,
Madison H. Powers, Anh
Tran, James McNeely,
Jeffrey Bacon, John A. Porco
Jr. | Boston University; Vertex
Pharmaceuticals | | M10 | Atropisomeric beta-Carbolines in
Undergraduate Research | Seann P. Mulcahy* | Providence College | | M11 | Azafluorenones: Toward Stable
Radical Intermediates and Fluorescent
Probes | Alexander Holland*,
Amanda Stebner, Chris
Abelt, Jonathan Scheerer | The College of William &
Mary | | M12 | Bioinspired Total Synthesis of
Abyssomicin 2 and Neoabyssomicin B | Hannah M. Mulliner 1*,
Sbusisiwe Z. Mbatha 1, Paul
R. Race 2, Martin A. Hayes
3 and Christine L. Willis 1. | 1. School of Chemistry, University of Bristol, Bristol; School of Natural and Environmental Sciences, Devonshire Building, Newcastle University, Newcastle- Upon-Tyne; 2. Biopharmaceuticals R&D, AstraZeneca, Mölndal, Sweden | |-----|---|---|--| | M13 | C ₃ -Symmetrical Prolineamide
Organocatalyst for Asymmetric Aldol
Reactions | Jian Liang, Ender Harris,
Jacob Cortez, Michael
Koogle, Josua Hybert, Rev
Derek Baluyut, Yu Liu* | Northern Michigan
University | | M14 | Concise Total Synthesis of (–)-
Pensubrubine Using an Interrupted
Fischer Indolization Strategy | Jiaming Ding*, Allison T.
Hands, Lucas A. Wein,
Nathan J. Adamson, John
M. Billingsley, Yi Tang, and
Neil K. Garg | University of California,
Los Angeles | | M15 | Conjunctive Cross-Coupling:
Development of Alkene
Carboboration Reactions | Suman Das*, Maeve A.
Reilly, Stanna K. Dorn,
Allison M. Pearson, and M.
Kevin Brown | Indiana University
Bloomington | | M16 | Control Site-Selective and Enantioselective C-H Functionalization of Arylcyclohexanes | Duc Ly 1*, Yannick T. Boni
1, Korkit Korvorapun 2,
Volker Derdau 2, John
Bacsa 1, Djamaladdin G.
Musaev 1, and Huw M. L.
Davies 1. | 1. Department of
Chemistry, Emory
University; 2. Sanofi-
Aventis Deutschland
GmbH, R&D, Integrated
Drug Discovery,
Germany. | | M17 | Crystallization-Enabled and
Dearomatization-Enabled Methods to
Access Chiral Non-Racemic Building
Blocks | Aidan Clarkson*, Seth O.
Fremin, Hazel Liu, Bryn K.
Werley, Kimberly A. Alley,
Jacob G. Robins, Shubin
Liu, Jeffrey S. Johnson | University of North
Carolina at Chapel Hill | | M18 | Crystallization-Induced Selectivity:
Case Studies from Discovery
Programs at AbbVie | Stephen N. Greszler*, David A. Degoey, Pamela L. Donner, Kristine E. Frank, Nathan J. Gesmundo, Michael A. Leitch, Augustine Osuma, Ashley L. Ramos, John T. Randolph, Anurupa Shrestha, Eric A. Voight, Matthew P. Webster, Michael D. Wood, Gang Zhao | AbbVie, Inc. North
Chicago, IL | |-----|---|---|---| | M19 | Curcumin Anchored Titanium
Complexes for Photocatalysis | Ajaya Sankara Warrier*,
Paul Knotts, Ryan Quick,
and Kolton Smouse | West Virginia University | | M20 | Design of Crosslinkable
Poly(phthalaldehyde) Derivatives | Kaitlin E. Hopper*, J.
Patrick Lutz | St. Lawrence University | | M21 | Design, Synthesis, and Stability
Studies of Promesogenic Amine
Capping Ligands for CdSe/ZnS
Quantum Dots | Jasmine Q. Vu*, Ashlynn B. Van Lare, Paige S. Morihara, Nicholas J. C. Licauco, Isabella C. Reyes, and Benjamin J. Stokes | Santa Clara University | | M22 | Development and Characterization of
a New Generation of Photo-activated
Platinum Catalysts for Silicone
Polymer Cross-linking | Patrick J. Landry*, Peter J.
Bonitatibus Jr., K. V.
Lakshmi | Rensselaer Polytechnic
Institute | | M23 | Development of a Scalable Route for
ABBV-576 Leveraging Multiple
Process Technologies | Stephen P. Lathrop*,
Nicholas J. Hafeman,
Aleksandra Holownia, Jesse
Brown, Nick Rosano, Kartik
Kamat, Kenneth Engstrom,
Jeffrey M. Kallemeyn | AbbVie Inc., North
Chicago, IL | | M24 | Diastereoselective Synthesis of a
Common
Tetramethylaminocyclobutanol
Building Block: Chemo- and
Biocatalytic Manufacturing Process | Daniel Zell 1*, Guy Pillon 1,
Hans Iding 2, Johannes A.
Burkhard 1, Lauren E. Sirois
1, Chong Han 1, Francis
Gosselin 1 | 1. Genentech, Inc., Dept. of Synthetic Molecule Process Chemistry, Genentech, Inc., South San Francisco, California, U.S.; 2. Dept. of Process Chemistry and Catalysis, F. Hoffmann-La Roche Ltd., Basel, Switzerland | | M25 | Divergent Stereochemistry Transfers
from Chirality to Alkene Geometry | Mingxin Liu, Vibha Kanale,
Christopher Uyeda | Purdue University | |-----|--|---|---| | M26 | Enantiocontrolled Cyclization to Form
Chiral 7- and 8-Membered Rings
Unified by the Same Catalyst
Operating with Different Mechanisms | Nicolò Tampellini*,
Brandon Q. Mercado, Scott
J. Miller | Yale University | | M27 | Enantioselective Olefin
Aminooxygenation via Organo-iodine
Catalysis | Zhichang Yin*, Fan Wu,
Alex M. Nguyen, Kristi
Shrestha, Navdeep Kaur,
Prabagar Baskaran,
Madison Martin Erickson,
Chloe E. Villa, Sara K.
Colombo, Michelle M.
Huynh, Wei Li | The University of Toledo | | M28 | Enantioselective Palladium-Catalyzed
Radical Allylic Alkylation | Dhanyaj Narayanan
Nampoothiry *, Eric
Dobias, Thomas N Snaddon | Indiana University
Bloomington | | M29 | Enantiospecific Synthesis and
Immunological Insights into MDP-
Inspired Glycopeptides for Enhancing
Subunit Vaccine Efficacy | Sana Yaqoob*,1,2 Zi-Hua
Jiang,3 Farooq-Ahmad
Khan1,2 | 1. Third World Center for
Science and Technology,
ICCBS, Univ. of Karachi,
Pakistan; 2. H.E.J Research
Institute of Chemistry,
ICCBS, University of
Karachi, Pakistan; 3. Dept.
of Chemistry, Lakehead
Univ., Ontario, Canada | | M30 | Functionalization of controlled pore glass supports containing a terminal amine | Keith McGee | University of Colorado
Denver | | M31 | HalA-guided, Stereoablative Total
Synthesis of (+)-Napyradiomycin A1 | Behrad Masoudi*, Saeedeh
Torabi Kohlbouni, Nastaran
Salehi Marzijarani,
Matthew Ochoa, Arvind
Jaganathan, Olivia
Diakantonis, Richard J.
Staples, Babak Borhan | Michigan State University | | M32 | HFIP Solvent Effects on
Enantioselectivity of Dirhodium
Tetracarboxylate-Catalyzed
Cyclopropanation | Turki M. Alturaifi 1, Kristin
Shimabukuro 2*, Jack C.
Sharland 2, Binh Khanh Mai
1, Evan A. Weingarten 2,
Mithun C. Madhusudhanan
1, Djamaladdin G. Musaev
3, Peng Liu 1, Huw M. L.
Davies 2 | 1. Dept. of Chemistry, University of Pittsburgh, 2. Dept. of Chemistry, Emory University, 3. Cherry L. Emerson Center for Scientific Computation, Emory University | |-----|--|---|--| | M33 | High-throughput electron diffraction in the XtaLAB Synergy-ED | Robert Bucker 1, Mathias
Meyer 2, Michal Jasnowski
2, Mateusz Idzi 2, Jessica
Burch 3* | 1. Rigaku Europe SE, Neu-Isenburg, Neu- Isenburg, Germany; 2. Rigaku Oxford Diffraction, Wrocław, Wrocław, Poland; 3. Rigaku Americas, The Woodlands, TX | | M34 | Insights into nanoparticle surface
bonding and coating architecture by
multinuclear solution-phase NMR
spectroscopy | Jacob D. Aubrey 1*, James
Gibson 1, John T. Leman 1,
Benjamin M. Yeh 2, and
Peter J. Bonitatibus Jr. 1 | 1. Chemistry and
Chemical
Biology,
Rensselaer Polytechnic
Institute, Troy, NY; 2.
Department of Radiology
and Biomedical Imaging,
University of California
San Francisco, | | M35 | Ionic liquid systems for cellulose integration and epoxy biocomposite fabrication | Andrea Szpecht*, Dawid
Zielinski, Marcin Smiglak | Poznan Science and
Technology Park, Poland | | M36 | Isoquinoline Derivatives from Merged
Cycloaddition/Cycloreversion
Sequences with 1,4-Oxazinone
Precursors | Jae Lee*, Jessica Richmond*,
Lauren Mullaney, LC
Thompson, David Zhao,
Jonathan R. Scheerer | College of William and
Mary | | M37 | Lewis Acid Catalyzed Diels-Alder
Reaction Between Electron-Rich
Partners | Muhammad Taha
Qureshi*, Syed Raziullah
Hussaini | The University of Tulsa | | M38 | Modular Synthesis of Phenazine-
Based Aggregation Induced Emission
Materials | Viktorija Miseljic*, R. Nacif-
Pimenta, Brian H. Northrop | Wesleyan University | | M39 | Pharmacophore-Directed
Retrosynthesis Applied to
Colletotrichone A | Joel G. Yoder 1*, Wei Ding
2, Stephan Sieber 2, Daniel
Romo 1 | 1. Baylor University, Dept.
of Chemistry and
Biochemistry; 2. Technical
University of Munich,
Germany, School of
Natural Sciences | |-----|--|--|--| | M40 | Pharmacophore-Directed
Retrosynthesis Applied to
Talaromynoid H: Synthesis of Highly
Oxygenated Tetracyclic Core | Adam J Youman*, Chelsea
M. Kelley, Phillip Z.
Junghans, Daniel Romo | Baylor University | | M41 | Pharmacophore-Directed
Retrosynthesis Applied to the
Ophiobolin Family | Jaquelin Aroujo*, Yongfeng
Taoa, Abigail Hillsa,
Keighley Reisenauerb,
Haleigh Parkerb, Santha
Rangananthanb, Joseph H.
Taubeb, and Daniel Romo | Baylor University | | M42 | Phosphine-Catalysed Polarity
Inversion Annulation for
Cyclopentane Synthesis | Chenxi Zhang 1*, Jeremy T. Maddigan-Wyatt 1, Xuan Nguyen 1, Antonia Seitz 1, Martin Breugst 2, David W. Lupton 1. Alexander I. Wright 1, Chenxi Zhang 1*, Jing Cao 1, Yuji Nakano 1, Lucia J. Sanchez 1, Julia DeBono 1, Sankeert Kapatkar 1, Gregory L. Challis 1, David W. Lupton 1. | 1. Monash University,
Australia; 2. Technische
Universität Chemnitz 2,
Germany | | M43 | Physiochemical Properties of
Diosgenin-Graphene Oxide-Fe3O4
Nanocomposite and Its Encapsulation
into Cyclodextrins and Chitosan | Khaled Q. Shawakfeh* | Jordan University of
Science & Technology,
Irbid, 22110, Jordan | | M44 | Progress towards the Synthesis of
Austin | Đức Phan*, John L. Wood | Baylor University | | M45 | Progress Towards the Total Synthesis
of the Ansamycin Family of Natural
Products | Toan Ho*, Joshua Pierce | Dept.of Chemistry and
Integrative Sciences
Initiative, NC State Univ. | | M46 | Rearrangements of oxy-substituted allyl silanes | Darshika Singh*,
Emmanuel W. Maloba,
Robert E. Maleczka, Jr. | Michigan State University | | M47 | Shedding light on alkene aziridination: Visible light photocatalysis with Naminopyridinium ylides | Gwendolyn E. Jamison*,
Zachary P. Burmeister*,
Emily C. McLaughlin | Bard College | |-----|---|---|--| | M48 | Silanols – From Ligand Design in
Enantioselective Catalysis to Blue
Light Reactions | Kevin Blanco-Herrero*,
Yun-Pu Chang, Turki
Alturaifi, Peng Liu,
Annaliese K. Franz* | University of California -
Davis; University of
Pittsburgh | | M49 | Stereoselective Alkylation of Auxiliary-Bound Amino-Ketones | Ian D. Terell*, Jeffrey S.
Cannon | Occidental College | | M50 | Supported Ionic Liquid-Phase
Materials (SILP) as Stable Modifiers
and Hardeners for Epoxy Composites | Dawid Zielinski 1*, Andrea
Szpecht 1, Rafal Kukawka
1, Joanna Dzialkowska 2,
Mariusz Pietrowski 2,
Michal Zielinski 2,
Magdalena Palacz 1,
Paulina Nadobna 1, Marcin
Smiglak 1 | Poznan Science and Technology Park, Poland; Adam Mickiewicz University, Poland | | M51 | Synthesis and Utilization of a
Paracyclophane Derived Planar Chiral
Catalyst for Asymmetric C-N Bond
Formation | Wesley Pullara*, Simon
Blakey | Emory University | | M52 | Synthesis of Azide-Conjugated
Prodrugs for Targeted Cancer Therapy | Marc A. Torres, B.S 1*, Dhiraj K. Jha, M.S 1, Bobae Park, Ph.D. 2, Yaguang Liu, M.D., Ph.D. 2, Bandana Chatterjee, B.S., M.S., Ph.D. 2, John CG. Zhao, M.S., Ph.D. 1 | University of Texas at San
Antonio, University of
Texas Health Science
Center | | M53 | Synthesis of bis-benzoxazolones and bis-benzimidazolinones for cholinesterase inhibition | Sophia Tallon*, Veronika
Anastasiadis*, Todd J.
Eckroat | Penn State Behrend | | M54 | Synthetic and structure–function studies of the gukulenins | Vaani Gupta 1*, Zechun
Wang 1, Joshua B. Combs 1
2, Timothy Wright 1 3, Lei
Chen 1 4, Boxu Lin 1 5,
Ryan Holmes 1 6, Bo Qin 1
7, Joonseok Oh 1 8, Jason M.
Crawford 1 9, and Seth B.
Herzon 1 9. | 1. Yale University; 2. University of California— San Francisco; 3. University of Toronto Mississauga, Canada; 4. Nanjing Gritpharma Co., Ltd., China; 5. Peking University, China; 6. Prelude Therapeutics; 7. New York University; 8. Amgen Inc; 9. Yale School of Medicine. | |-----|--|---|---| | M55 | Synthetic Progress towards Materials with Potential for Carbon Capture | Jay Wm. Wackerly* | Central College | | M56 | Synthetic Strategies for Novel 2,7-
Naphthyridine Compounds as
MASTL Inhibitors | Stephanie Scales*, Madeline
Berry, Rebecca A. Gallego,
Paul Richardson, Michelle
Tran-Dubé, Fen Wang,
Shouliang Yang and
Indrawan McAlpine | Pfizer Oncology
Medicinal Chemistry | | M57 | The Concise Synthesis of abeo-Steriod
Bufogargarzin B | Zoey Surma*, Eugene
Zviagin, Volodymyr Hiiuk,
and Pavel Nagorny. | University of Michigan | | M58 | The ReactALL Platform: Testing and Application to Process Development | Russell Algera, Melissa
Lee*, Sebastien Monfette,
Truong Nguyen | Pfizer | | M59 | The Synthesis of Novel Acylated
Proflavine Derivatives | Kathryn M. Pogue*, Samuel
S. Tartakoff | Saint Lawrence University | | M60 | Total Synthesis of (+)–Eburnamonine
via Asymmetric Alkene
Cyanoamidation and C–CN Bond
Activation | Serena DiLiberti*, Matt S.
Eastwood, Sadie C. Otte,
and Christopher J. Douglas | University of Minnesota -
Twin Cities | | M61 | Total Synthesis of Complex
Pyrroloiminoquinone Alkaloids | C. Foster Graf*, Joseph P.
Tuccinardi, James T. Olsen,
John L. Wood | Baylor University | | M62 | Total Synthesis of
Cycloartobiloxanthanone | Cheng-En Hsieh*, Sarah N.
Dishman, Linda Ung, Tony
E. Dorado, and Jared T.
Shaw | University of California,
Davis | | M63 | Total Synthesis of Rupestines H and I | Aimee Long, James R.
Vyvyan* | Western Washington
University | |-----|--|---|--| | M64 | Visible light-induced cyclobutane
synthesis: Intermolecular [2 + 2]
cycloadditions with vinylogous ester
and amide heterocycles | Maximus G. Schultz*,
Alexandria J. Thomas,
Maryam Mohibby, Amirat
Maiyegun, Emily C.
McLaughlin | Bard College | | M65 | Wavelength-Orthogonal Optodynamics to Overcome the Statistical Limitations of Interfacial Photopolymerizations | Georgios Toupalas*,
Timothy M. Swager | Department of Chemistry,
Massachusetts Institute of
Technology | | M66 | Wittig and Wagner-Jauregg Reactions in the Production of Morphine Analogs | Kaitlyn Barton 1*, Chase
Smith 2*, Samuel Tartakoff | Saint Lawrence University | | M67 | Optimization of Cu(II)-catalyzed C-O cross-coupling reaction for the synthesis of structurally complex vinylic ethers | San L. Pham*, Frank E.
McDonald | Department of Chemistry,
Emory University | | T1 | 1,2-Acyl Transposition through Photochemical Skeletal Rearrangement of 2,3- Dihydrobenzofurans | Ryan T. Steele*, Motohiro
Fujiu, Richmond Sarpong | University of California,
Berkeley | | T2 | 2,5-Dipyridylpyrrole in
Supramolecular Chemistry – Click,
Rotaxanation, and Skeletal Editing | Jędrzej Perdek*, Rafał
Grzelczak, Miłosz Siczek,
Bartosz Szyszko | University of Wrocław,
Poland | | Т3 |
A Catalytic Asymmetric
Intramolecular [4 + 1]-Cycloaddition
for the Total Synthesis of Terpene
Alkaloid Natural Products | Wen Xiu*, Calvin D.
Huffman, William A.
Swann, Christina W. Li and
Christopher Uyeda | Purdue University | | T4 | A Second-Generation Route to the
Cereblon Fragment of ARV-471,
Vepdegestrant | David J. Bernhardson 1, Jonathan Fifer 1, Zebediah C. Girvin 1, Ian Hotham 1, Johnny W. Lee 1, Valerie May 1, Blake Rauschenberger 1, Chase A. Salazar 1, Liam S. Sharninghausen 1, Robert A. Singer 1, Ryan Sullivan 2, Zheng Wang 3, Ethan Weinstein 1, Gerald A. Weisenburger 1, Joseph M. Zanghi 1* | 1. Pfizer, Inc., 2 Eurofins
CDMO Alphora Inc.,
Canada; 3. Eurofins
Lancaster Laboratories | |----|--|---|---| | T5 | Activation of Alkyl Electrophiles
Mediated by Iminopyridonate
Bimetallic Ni(I) Complexes for
Suzuki-Migaura Cross-coupling | Hailemariam A. Mitiku,
Abhishek A. Kadam,
Rebecca Reagan, William
W. Brennessel, & Prof. C.
Rose Kennedy | University of Rochester | | T6 | Adding Saturated N-Heterocycles to
Automated Block-Based Synthesis of
Drug Like Chemical Matter | Dylan Brandt 1*, Joseph R.
McAuliffe 1; Vikram
Mubayi 1; Daniel J. Blair 1;
Martin D. Burke 1, 2, 3, 4 | 1. Dept. of Chemistry Univ. of Illinois Urban- Champaign; 2. Molecule Maker Lab Institute, Univ. of Illinois Urbana Champaign; 3. Carle Illinois College of Medicine, Univ. of Illinois Urbana-Champaign; 4. Dept. of Biochemistry, Univ. of Illinois Urbana- Champaign | | T7 | Analysis of C-H Activation of Directed
Cu(II) Cyclometalated Complexes | Ila Y. Castro De la Torre*,
Melanie S. Sanford | University of Michigan | | Т8 | Biocatalytic Aza-Michael Addition of
Aromatic Amines to Enone Using α -
Amylase in Water | Sunil Dutt | Thapar Institute of
Engineering and
technology Patiala Punjab | | Т9 | Caging the Chlorine Radical: Selective Photocatalytic C(sp3)–H Functionalization Enabled by Terminal Cu–Cl Sites in a Metal- Organic Framework | Mary Eaton 1*, Akash Ball
2, Sky Chen 1, Daniel
Nakamura 1, Tyler Azbell 1,
Heather Kulik 2, and Phillip
Milner 1. | Cornell University; 2. Massachusetts Institute of Technology | | T10 | Chan-Evans-Lam Oxidative
Alkylation | Pria Parker*, Nitya
Sharma*, Hala Maloul* | Smith College | |-----|--|--|---| | T11 | Copper-Catalyzed Enantioselective
Haloetherification of Alkenols | Joseph M. Fose*, Atinuke
Abanikanda, and Sherry R.
Chemler | State University of New
York at Buffalo | | T12 | Development of an Efficient O-
Acylation Reaction in a Scalable
Synthesis of GDC-6599 | Di Xu 1*, Allen Y. Hong 1,
Thomas C. Malig 2, Kenji L.
Kurita 2, Haiming Zhang 1,
and Francis Gosselin 1 | 1. Dept. of Synthetic Molecule Process Chemistry, Genentech, Inc., South San Francisco; 2. Dept. of Synthetic Molecule Analytical Chemistry, Genentech, Inc., South San Francisco | | T13 | Development of Dearomative
Methods to Build Molecular
Complexity | William Carrick*, Michael
Eng, Dorian Vallantin,
Tabea Nett, Mikhail Saeed,
Shubin Liu, Benjamin
Darses, Jeffrey Johnson | University of North
Carolina at Chapel Hill,
Université Grenoble Alpes | | T14 | DFT study of the Rh-catalyzed
cyclopropanation step in the total
synthesis of rauvomine B | Gabriel N. Morais 1*, Jake
M. Aquilina 2, Ankush
Banerjee 2, Myles W. Smith
2, Shuming Chen 1 | 1. Oberlin College; 2. UT
Southwestern Medical
Center | | T15 | Division of Organic Chemistry
Member Benefits | Andrew Freiburger 1, Ed
Fenlon 2, Brian Myers 3 | 1. Northwestern
University; 2. Franklin
and Marshall College; 3.
Ohio Northern University | | T16 | Electrochemical α-C–H
Functionalization of Nitramines for
Accessing Bifunctional Energetic
Heterocycles | Cindy Lee 1, Luiz F. T.
Novaes 1, Rojan Ali 2,
Thomas Wirth 2*, and Song
Lin 1* | Cornell University | | T17 | Electrochemical selective arene C-H amination | Griffin Stewart*, Eva
Alvarez, Chris Rapala,
Christian Malapit | Northwestern University | | T18 | Expanding the utility of bifunctional organosilicates for tetrahydroquinoline and piperidine synthesis | Dalia Khalil, Ohm
Brijeshbhai Patel, Rahil
Patel, Mohamed Ibrahim,
Nidheesh Phadnis, Jessica
A. Molen, John A. Milligan* | Thomas Jefferson
University | | T19 | Exploring the Use of Redox for the
Formation of Difficult-to-Form Bonds
from Pd and Ni | Zoe Wachtel*, Joshua
Thedford, Sabrina Carneiro,
Melanie Sanford | University of Michigan | |-----|--|--|---| | T20 | FLASH Catalyst: Regioselective
Chlorination of Pharmaceutical
Relevant (Hetero)cycles | Zhao Liu*, Jeffery
Gustafson | Stony Brook University | | T21 | From Flexible to Rigid: Exploring
Catalytic Palladium C-X Bond
Forming Reactions for More Clinically
Suitable Protein Degraders | Raphael K. Klake*, Archita
Sripada, Nunzio
Sciammetta, Charles S.
Yeung | Merck & Co., Inc. | | T22 | General and Selective Fluorination of
Alkyl Halides via AgF2-Mediated
Halogen Exchange | Snehlata Yadav*, Deepak
Pradhan, Subhrasish
Banerjee, Mathew Vetticatt,
Jennifer Hirschi | SUNY Binghamton
University | | T23 | Generation of Polysubstituted
Tetrahydrofurans via Urea-Enabled,
Pd-Catalyzed Olefin Heteroannulation | Shannon O'Neil*, Owen
Monteferrante, Brooke
Stanley, Shauna Paradine | University of Rochester | | T24 | Gold(I)-Catalyzed Synthesis of 1H-
Isochromenes | Miles L. McCue 1, Navraj J.
Singh 1, Julianna M. Mouat
2, Zachary A. Grimm 2,
Michael R. Gesinski 1* | 1. Lawrence University; 2.
Southwestern University | | T25 | Gold(I)-Catalyzed Synthesis of
Naphthoquinones and Isoquinolines | Minh N. Tran 1*, Andrew F.
Hardianto 1, Sean J. Calvert
2, Chelsey C. Southwell 2,
Nathaniel J. Blake 2,
Michael R. Gesinski 1 | 1. Lawrence University 2.
Southwestern University | | T26 | Guaiazulene Functionalization as a
Colorful Introduction to Column
Chromatography | J. Patrick Lutz* | St. Lawrence University | | T27 | Highly Efficient, Green Chemical
Recycling and Upcycling of Polylactic
Acid (PLA) Mixed Plastic Waste | Vasilisa Palkova*, Ria Vij,
and Olivia Soliman | Department of Chemistry,
Union College | | T28 | Hydrothermal Reactions of Aromatic
Carboxylic Acids and Related
Products on Mineral Surfaces | Selmina Huskic*, Brianna
Casey, Kristin Johnson-Finn | Rensselaer Polytechnic
Institute | | T29 | Iron catalyzed regiodivergent synthesis of N-heterocycles | Kristi Shrestha*, Alex M.
Nguyen | The University of Toledo | | T30 | Iron-Facilitated Bi(hetero)aryl
formation via N-(2-
picolyl)picolinamide complexes | Julia Schutz, Elsa Hinds* | Saint Mary's College | |-----|---|---|--| | T31 | Kinetic Studies to Enable a Scalable
Direct Glycosylation of a GalNAc
Donor | Shea O'Sullivan*, James
Murray, Eric Kircher, Zhou
Li, Tsang-Lin Hwang, Seb
Caille, Janine Tom | Amgen | | T32 | Ligand denticity and substrate chelating ability interact to control chemoselectivity in nickel-catalyzed amide cross-coupling | Vivek G Pillai*, Kaycie R.
Malyk, Daniel Akuamoah,
C. Rose Kennedy | University of Rochester | | Т33 | Methylene Insertion for Direct Access
to Tailored Amines | Isabella Alansari, Meruyert
Binayeva, Rebecca Brew,
Caitlin Dougherty, Amlan
Nayak, Ian Nelson, Wyatt
Simmons | Michigan State University | | T34 | Nickel-Catalyzed C-CN Cross-
Coupling of Benzonitriles and
Cyclopropyl Ketones | Nathan Coddingtion*,
Yvette Luna, Robert
Bradley, Madison Loper,
Paul Saucedo, Ana
Bahamonde | University of California,
Riverside | | T35 | Developing Photoresponsive Artificial
Chaperones | Hannah Claus*, McKenna
Young, Elizabeth Piedmont,
Benjamin Partridge | University of Rochester | | Т36 | Optimizing Hydrogenation
Reactions with Gas
Chromatography: Unveiling the
Effects of Temperature, Pressure,
and Catalysts | Masoumeh Rahim*,
Charles Garner | University of Memphis | | T37 | Pd-Catalyzed hydroxylation of aryl
halides under air and in
eco-friendly
solvent | Erica E. Schultz*, Mariam
Beshara, Haylee P.
Christopher, Gwendolyn A.
Jones | Lake Forest College | | T38 | Photosensitive Platinum Catalysts for
Hydrosilation-Curable Silicones | Melina Michailidis*, John
Leman PhD, Peter J.
Bonitatibus Jr., PhD | Dept. of Chemistry and
Chemical Biology,
Rensselaer Polytechnic
Institute | | T39 | Poly(arylene ether)s via Cu(II)-
Catalysis | Benedikt S. Schreib*,
Timothy M. Swager | Massachusetts Institute of Technology | |-----|---|---|--| | T40 | Progress Toward the Total Synthesis
of (–)-Keramaphidin B | Jordan A. M. Gonzalez*, Giulianna A. Miseo, Zach G. Walters, Milauni M. Mehta, Matthew S. McVeigh, James L. Bachman, and Neil K. Garg | University of California,
Los Angeles | | T41 | Pyrrole Rearrangements for
Chromophore Development | Cesar Reyes*, Elias Picazo | University of Southern
California | | T42 | Regioselective 1,n-
Dicarbofunctionalization of
Homoallylammoniums to Synthesize
1,3-Dienes Via C-N Bond Cleavage | Mandapati Bhargava
Reddy*, Raj Debnath and
Quinton J. Bruch | Stony Brook University | | T43 | Regioselective Hypervalent Iodine
Catalyzed Difunctionalization of
Alkenes to Access Morpholine | Madison Martin Erickson,
Zhichang Yin, Wei Li | University of Toledo | | T44 | Shaking-Up Metal-Mediated Organic
Reactions Using Ball Mill | Jagadeesh Varma
Nallaparaju 1*, Tatsiana
Nikonovich 2, Riin Satsi 1,
Riina Aav 1, Dzmitry
Kananovich 1. | 1. Tallinn University of
Technology, Estonia; 2.
Aalto University, Finland | | T45 | Stereocontrolled Synthesis of O-
Heterocycles | Patrycia Zybura*, Alison
Frontier | University of Rochester | | T46 | Strained-Promoted Reactions of
Cubene | Sarah A. French*, Christina
A. Rivera, Dominick C.
Witkowski, and Neil K.
Garg | University of California
Los Angeles | | T47 | Structure, Reactivity and Mechanistic
Insights of Alkyl-Bridged bis(N-
heterocyclic carbene) Nickel
Precatalysts in Homogeneous
Catalysis | Kerry-Ann Green 1*, Ellie
Beams 1, Claudia Zhang 2,
Abigail L. Moffett 1 | 1. Williams College; 2.
Stanford University | | T48 | Study of Achmatowicz Intermediates in halo-Prins/ Ionization Cascades | Yusuf A. Ibrahim*, Alison J.
Frontier | University of Rochester | | T49 | Synthesis and Characterization of
Diversely Substituted Pyrrolidine-2-
ones with Potential Antiproliferative
Activity | Katelynn S. McPhee*,
Matija Bekic, Liliya V.
Frolova | Purdue University - Fort
Wayne, Department of
Chemistry and
Biochemistry | |-----|--|---|---| | T50 | Synthesis and Reactivity of
Geometrically Distorted Alkenes in
Fused Bicycles | Allison M. Clark*, Luca
McDermott, Marianna C.
Tonoyan, and Neil K. Garg | University of California,
Los Angeles | | T51 | Synthesis and Reactivity of Nitrogen-
Containing Cyclic 1,2,3-Trienes | Daniel W. Turner*,
Dominick C. Witkowski,
Ana S. Bulger, K. N. Houk,
and Neil K. Garg | University of California,
Los Angeles | | T52 | Synthesis and Study of Atropisomeric
1-Aryl beta-Carboline | Joseph Mazzucca, Cristina
Diaz, Elizabeth Perda, Alma
Martinez, Malaquias Loiza,
John Stathoulopoulos,
Edward J. McClain, Seann
P. Mulcahy | Providence College | | T53 | Synthesis and Study of
Organometallic Intermediates in Base
Metal-Catalyzed Aminoquinoline-
Directed C–H Functionalization | Emily L. Nolan*, Fengrui
Qu, Melanie S. Sanford | University of Michigan | | T54 | Synthesis of (Z)-10,11-
dihydrobenzo[e][1,2,3]triazolo[1,5-
a]azocine | Ronald Brisbois*, Scott
Pedersen, Sarah Solomon,
Hazel Waters | Macalester College | | T55 | Synthesis of 3,6-Diiodo-2,7-Dichloro-
1,8-Naphthyridine and Its Application
in Palladium- Catalyzed Cross-
Coupling and Macrocycle Assembly | Lily Qin*, Andrew L.
Clevenger, Jeffrey L. Katz | Colby College | | T56 | Synthesis of a D3h cyclo(3,3'-p-
terphenylene ethynylene) carbon
nanobelt precursor | Jasmine Bordelon*, Karalyn
Murray, Thomas S. Hughes | Department of Chemistry
and Biochemistry, Siena
College | | T57 | Synthesis of Antitubulin Indole-
Substituted Furanones | Ameer H. Muse 1*, Elle S.
Grillo 1, Keira L. Potvin 1,
Marcella Venettozzi 1,
Kathryn E. Cole 2, Patricia
Mowery 1, Erin T. Pelkey 1 | 1 Hobart and William
Smith Colleges | | T58 | Synthesis of aqueous bis-lactam-1,10-
phenanthroline ligand for lanthanides
separation | Joshua Olaf Aggrey*,
Subhamay Pramanik, Ilja
Popovs, Santa Jansone-
Popova | Oak Ridge National
Laboratory | |-----|--|--|---| | T59 | Synthesis of Benzo-fused Cycloheptanones from Cyclobutanol Derivatives by a C–C Cleavage/ Cross Coupling/ Enolate Arylation Sequence | Gwyneth L. Pudner*,
Selena Dessain, Eric K.
Wu, Richmond Sarpong | University of
California, Berkeley | | T60 | Synthesis of Bicyclo[2.1.0]pentanes
and Vinylcyclopropanes Using a Pd(0)
Carbene | Isaiah K. Eckart-Frank,
Emily S. Arnold*, Liam P.
Murphy, Prof. Sidney M.
Wilkerson-Hill | Department of Chemistry,
The University of North
Carolina at Chapel Hill | | T61 | Synthesis of Functionalized Indole-
Dihydrothiopyran Hybrids through
Intramolecular Alkyne-Carbonyl
Metathesis | Miguel Andrade, Mukund
Jha* | Department of Biology
Chemistry and
Geography, Nipissing
University, North Bay,
Ontario, Canada | | T62 | Synthesis of Guaiazulene-3-Carboxylic
Acid and Oxalic Acid Derivatives | Emma Audi*, Carly M.
Zack*, J. Patrick Lutz | St. Lawrence University | | Т63 | Synthesis of Isatin through DMSO
Mediated Oxidation of Indigo | Alivia Roerdink*, James
Shriver | Central College | | T64 | Thermally Hazardous 1,3-Dioxolane
Coupling Reaction Made Safer by
Employing Process Safety Data | James Clarke 1, Duncan
Farr 1, Jimmy Wang 1,
Heather Ingram 1, Caroline
Chapman 1, Harriet Field 1,
Christopher P. Breen 2, Eva
M. Gulotty 2*, Sara Mason
2, Grace Russell 2, Oliver
Williams 2, Shruti Kumta 2,
Jerry Britto 2, Li-Jen Ping 2 | 1. Pfizer U.K., Discovery
Park House, Ramsgate
Road, Sandwich, U.K.; 2.
Snapdragon Chemistry, A
Cambrex Company,
Waltham Massachusetts | | T65 | Three Component Coupling Using a
Sustainable Iron Catalyst to Form
Substituted Imidazole Products | Celia McGhiey 1* | 1. Saint Louis University | | T66 | Using a Packed-Column Gas
Chromatograph as a Fixed-Bed Flow
Reactor | Mark Wilson, Dr. William
Hutcherson, Dr. Charles M.
Garner, Jared Kaiser,
Annabel Doyle | University of Memphis | | T67 | Visualizing Molecules: An Innovative
Extra Credit Assignment Linking
Organic Chemistry and Art Museum
Visits | Zachary J Poulos | Massachusetts College of
Pharmacy & Health
Sciences | |-----|---|--|---| | Т68 | The influence of N-(2-
(tetrafluoro(trifluoromethyl)-λ6-
sulfanyl)ethyl)((N-CF ₃ SF ₄ -ethyl)
groups on peptide bond formation
and on amide bond conformation | Willow Desoucey*, Sakshi
Shah, John T. Welch | University at Albany | | Т69 | The reactivity of tetrafluoro(trifluoromethyl)-λ6-sulfanyl chloride (CF ₃ SF ₄ Cl) with substituted alkynes and alkenes | Eleanor van der Riet*, John
T. Welch | University at Albany | | W1 | A Catalytic Wittig Approach to the
Piperacase Family of Natural Products | James C. Adrian, Jr.* and
Anthony J. Condemi | Union College, Chemistry
Department | | W2 | Activated benzyloxypyridinium salts for mild and efficient benzylation of oxygen nucleophiles | Emma E. Horton*, Colleen
R. Kinney*, Philip A.
Albiniak | Ball State University | | W3 | Amphiphilic Dendrons as
Supramolecular Holdase Chaperones | Elizabeth Piedmont 1*, Erin
Christensen 1*, Todd
Krauss 1 2*, Benjamin
Partridge 1* | University of Rochester
and Institute of Optics,
University of Rochester | | W4 | Analysis of Electronic and Steric
Factors in Bis-Chalcone Synthesis | Nikolas Bodnar*, Jacob
Bundesmann*, Emma
Fallon*, Dr. Sarah Zingales | US Coast Guard Academy | | W5 | CDK2 Bivalent Inhibitors for Anti-
Cancer Therapy and Non-Hormonal
Male Contraception | Laila Aiad
1*, Gunda
Georg 2 | 1. Dept. of Chemistry, College of Science and Engineering, Univ. of Minnesota Twin Cities; 2. Dept. of Medicinal Chemistry, College of Pharmacy, Univ. of Minnesota Twin Cities | | W6 | Cross Carbonyl-Olefin Metathesis
(XCOM) of Unactivated Olefins | Jason Wu*, Moises Vargas-
Penalver, Tristan H.
Lambert | Cornell University, Department of Chemistry & Chemical Biology | | W 7 | Design and Synthesis of Novel
Cyclopentyl Dinucleotides (CPNs) as
STING Agonists | Jacqui Hoffman*, Daniel Canterbury, Ramalakshmi Chandrasekaran, Chan Huh, Indrawan McAlpine, Ryan Patman, Stephanie Scales, Jianmin Sun, Tuan Tran, Michelle Tran-Dubé, Fen Wang, Joseph Warmus, Martin Wythes, Shouliang Yang & WuXi | Oncology Medicinal
Chemistry, Pfizer | |------------|---|---|--| | W8 | Design, syntheses, and cytotoxic
bioevaluations of some benzylidene
cinnamoylhydrazides | Mohammad Hossain 1*, Stephen M. Markley 1, Jacquelynn J. Wiles 1, Jolie N. Dionne 1, Jacqueline Pena-Zacarias 2, Praveen K. Roayapalley 3, Renato J. Aguilera 2, Jonathan R. Dimmock 3 | 1. School of Sciences, Indiana Univ. Kokomo; 2. Department of Biological Sciences, University of Texas at El Paso; 3. College of Pharmacy and Nutrition, Univ. of Saskatchewan, Canada | | W9 | Design, Synthesis and Evaluation of
Next-Generation Glycosidase
Inhibitors through Side Chain
Conformational Control | Po-Sen Tseng*, Kelley W.
Moremen, Zachary A.
Wood, David Crich | University of Georgia | | W10 | Design, synthesis, and testing of isatin-linked cholinesterase inhibitors | Todd J. Eckroat* | Penn State Behrend | | W11 | Developing photoswitchable GTP analogs to control protein assembly | Abhishek Roy*, Kari
Maxian, Benjamin E.
Partridge | Department of Chemistry,
University of Rochester | | W12 | Development of a Naphthalimide-
Based Fluorogenic Probe for Detection
of Galanin | Austin Apesa*, Glenn
Gilyot | Hampden-Sydney College | | W13 | Development of a Naphthalimide-
Based Fluorogenic Probe for Detection
of Leptin | Davis Mills*, Glenn Gilyot | Hampden-Sydney College | | W14 | Development of a near-infrared
naphthalimide-based fluorogenic
probe for detection of leucine
aminopeptidase (LAP) | Glenn Gilyot*, Benjamin
Gerber, Thomas Morris,
Garrett Regan | Hampden-Sydney College | | W15 | Development of a sustainable process to florylpicoxamid from renewable raw materials | Nakyen Choy*, Nicholas R.
Babij, Megan Cismesia,
David Couling, Nicole
Hough, Elizabeth
McCusker | Corteva Agriscience | |-----|---|--|---| | W16 | Development of Bivalent Inhibitors of
Cyclin-dependent Kinase 2 for the
Treatment of Cancer and Male
Contraception | Maryam Nazari*, Kelsey A.
Holdaway, and Gunda I.
Georg | Dept. of Medicinal
Chemistry and Institute
for Therapeutics
Discovery and
Development, University
of Minnesota. | | W17 | Development of pyruvate carboxylase (PC) inhibitors for studying cancer cell metabolism | Subhabrata Chaudhury 1,
Nick Schneider 2, William
A. Donaldson 3, Martin St.
Maurice 2 | 1. Dept. of Biological and
Chem. Sciences, New
York Institute of Tech.; 2.
Dept. of Biological
Sciences, Marquette Univ.;
3. Dept. of Chem.,
Marquette Univ. | | W18 | Direct-to-Biology Enabled Molecular
Glue Discovery | Maowei Hu*, Daniel J. Blair | St Jude Children's
Research Hospital | | W19 | Drug Target Identification through
Visible Light Photocrosslinking | Brianna Uquillas*, Allison
Hurd*, Josephine Cochran,
Lindsay Repka | Middlebury College | | W20 | Dynamic Kinetic Asymmetric
Hydroacylation: Racemization by Soft
Enolization | Stephanie Corio*, Jennifer
Hirschi | Binghamton University | | W21 | Examining The Electronic Structure of
the Primary and Secondary Quinone
Acceptors of Photosystem II | Caitlyn Mutchler 1,2*,
Patrick Landry 2, and K. V.
Lakshmi 2 | 1. The Biochem. and
Biophysics Program; 2.
the Dept. of Chem. and
Chem. Biology and the
Baruch '60 Center for
Biochem. Solar Energy
Research, Rensselaer
Polytechnic | | W22 | Exploring Synthetic Pathways
Towards Efavirenz: Replacement of
the Side Chain with Larger
Hydrocarbon Rings | Rocco Vargas 1*, Kaya
Brooks 2, Ralph N.
Salvatore Ph.D. 3 | Southeastern University
and University of South
Florida | | W23 | Fit-For-Purpose Process Development
of TEAD inhibitor GDC-8025 | Jeff Shen*, Nick White. | Genentech | 49th National Organic Chemistry Symposium 2025 • Rensselaer Polytechnic Institute | W24 | Generation and Trapping of 1,7-
Quadricyclene | Jiaming Ding*, Arismel
Tena-Meza, and Neil K.
Garg | University of California,
Los Angeles | |-----|---|--|---| | W25 | Identification of Indoline-Containing
Inhibitors of Glycine Transporter 2 | Tanmay K Pati 1* Christopher L. Cioffi 1, Mahesh Gaddam 1, Parthasarathy Muthuraman 1, Arun Raja 1, Srinivasan Jayakumar 1, Ramajayam Kuupusamy 1, Arunan Palanimuthu 1, Snigda Singh 1, Irina Lotsaris 2, Ryan Cantwell-Charter 2, Sally Evans 2, Julian Peiser- Oliver 2, Sarasa Mohammadi 2, Robert J. Vandenberg 2 | 1. Rensselaer Polytechnic
Institute, Department of
Chemistry and Chemical
Biology, Troy, New York;
2. University of Sydney,
School of Medical
Sciences, New South
Wales, Australia | | W26 | Identification of Novel Sulfoximine
Inhibitors of RPE65 – Potential
Therapeutics for Stargardt Disease | Benjamin Howard 1*,
Christopher L. Cioffi 1,
Lucia Maldonado-Vasquez
1, Darian Topolski 1,
Krishna Yadav 1,
Konstantin Petrukhin 2,
Gennadiy Moiseyev 3 | 1. Rensselaer Polytechnic
Institute; 2. Columbia
University; 3. Wake Forest
University | | W27 | Improving the Bioavailability of
Gefitinib Across the Blood-Brain
Barrier: A Prodrug Strategy for
Inhibition of P-gp-mediated Efflux | Douglas S. Chan*, Christine
A. Hrycyna, & Jean
Chmielewski | Purdue University | | W28 | Investigations into the Mechanism of
Cambiarene Formation | Katie Morrison*, Jay
Wackerly | Central College | | W29 | Late-Stage Serine Modification
Enables Noncanonical Peptide
Synthesis | Zhenyan Guo*, Tianning
Diao | New York University | | W30 | Lewis Base-Mediated Nucleophilic
Additions of beta-Silylallenes | Gregory W. Adams* and
Timothy J. Barker | College of Charleston | | W31 | Mechanistic investigation for catalytic carbonyl-olefin and carbonyl-alkyne metathesis reaction. | Anjali Ravindran Nair*,
Mathew J. Vetticatt | Binghamton University | | W32 | Mechanistic investigation into the many roles of indole in Ni/photoredox C-N coupling | Olivia Taylor*, Harsh
Chavda, Kevin Liang,
Tanner Megna, Angie
Lopez, Grace Kim, Ana
Bahamonde | University of California,
Riverside | |-----|--|---|--| | W33 | Mechanistic Investigation of Nitrogen
Atom Insertion Skeletal
Rearrangements | Somnath Ganguly*,
Stephanie Corio, Suchand
Basuli , Jennifer Hirschi | SUNY Binghamton
University | | W34 | Mechanistic Investigation of
Nucleophilic Aromatic Substitutions
between Nitrogen Nucleophiles and
Aryl Fluorides | Harrison W. Toll 1, Xiaoyi
Zhang 1, Tong Gao 1,
Guilherme Dal Poggetto 2,
Mikhail Reibarkh 2, Joshua
J. Lee 1, Katherine J. Yang 1,
Eugene E. Kwan 2, Amanda
K. Turek 1 | 1. Williams College; 2.
Merck & Co., Inc. | | W35 | Mechanistic Investigations into The
Electrophotocatalytic C-H
Functionalization of Ethers | Joshua Crow*, Tamal Das,
and Jennifer Hirschi | Binghamton University | | W36 | Mechanistic Study of
Diphenylprolinol Silyl Ether-
Catalyzed Michael Addition | Lucian Fioretto*, Joseph A.
Izzo, Chetan Joshi, Juliet M.
Macharia, Sierra Marker,
Mathew J. Vetticatt | Binghamton University | | W37 | Metallooxaziridine Catalysis for the Functionalization of Alkenes | Jenna Doran*, Erin Doran,
Ali Pinarci, Morgan Rossi,
Rufai Madiu | Rowan University | | W38 | Optimizing the
solid-phase synthesis of amphiphilic peptoid sequences for the assembly of gold embedded nanosheets. | Khadija Amir [1], Sasha
Stark [1], Raquel Duenas
[1], Ellen Robertson [1],
Kristiana Witte [2], Karlee
McKinny [2], Caroline
Proulx [2] | [1] Union College, [2]
North Carolina State
University | | W39 | Organic Chemistry for Kids and other
Educational Initiatives | Daniel W. Turner*,
Giulianna A. Miseo,
Benjamin A. Janda, and
Neil K. Garg | University of California,
Los Angeles | | W40 | Palladium-Catalyzed Annulation of
Anti-Bredt Olefins | Zach G. Walters*, Aimee K.
Long, and Neil K. Garg | University of California,
Los Angeles | | W41 | PLP-Dependent Biocatalysts for C-C
Bond Formation | Alexander Kim 1*, James
Howard 2, Will Aye 1, Ryan
Russo 1, Kendrick Smith 1,
Matthew Sigman 2, Alison
Narayan 1 | University of Michigan; University of Utah | |-----|---|--|---| | W42 | Radical-Mediated Protein Editing
Allows 18F Protein Labelling | Andrew M. Giltrap 1,2,3*; Adeline W. J. Poh 2,3,4; Nan Yang 2,3,4; Daniel C. Anthony 3; David Leppert 5; Veronique Gouverneur 4; Benjamin G. Davis 2,3,4. | 1. Univ. of Technology Sydney, Australia; 2. The Rosalind Franklin Institute, UK; 3. Pharmacology, The Univ. of Oxford, UK; 4. Chem., The University of Oxford, UK. 5. Neurology, Univ. Hospital Basel, Switzerland | | W43 | Regio-, Stereo-, and Chemoselective
Iterative Glycosylation via Fluoride
Migration | Timothy Emmel*,
Chandana Sunil, John
Montgomery | University of Michigan | | W44 | Rhodamine-dipeptide Conjugates for
Cellular Tracking and Drug Delivery | Sagarika Taneja*, Ziyuan
Meng, Bingxun Li,
Benjamin Conrad, Jon R.
Parquette | The Ohio State University | | W45 | Shining Light on the Use of Sensor
Arrays to Detect Anions | Nicola Edwards* 1, Eben
Holmes 1, Guo Chen* 2,
Nathan Lam* 2 | 1. University of St. Joseph,
West Hartford, CT; 2. The
Loomis Chaffee School,
Windsor, CT | | W46 | Size Isn't Everything:
Diastereoselective Synthesis of
Azetidines | Matthew Kiernan*, Paul
Evans | University College
Dublin, Ireland | | W47 | Spectroscopic Investigation of the
Energetics of Electron Transfer using
menB variants of Photosystem I | Brandon P. Russell 1,3*, Vasily Kurashov 2, David F. Iwig 2, Patrick Landry 3, Wade Johnson 4, Art van der Est 5, John H. Golbeck 2, David J. Vinyard 1, and K. V. Lakshmi 3 | 1. Louisiana State University; 2. The Pennsylvania State University; 3. Rensselaer Polytechnic Institute; 4. Susquehanna University 5 Brock University | | W48 | Structural Impact of 8-oxoG on
Oligonucleotides of RNA Containing
1-Nucloetide Bulges | Dagoberto Grijalva-Flores*,
Marino J.E. Resendiz | University of Colorado
Denver | | W49 | Sulfinate Protecting Groups for the
Development of Sulfonyl Fluoride
Inhibitors | Twinkle I. Patel, Makayla
L. Williams, Yumeng
Chi, Ramkrishna Laha,
Geoffrey H. Chan*,
Matthew J. Moschitto | Rutgers | |-----|---|--|---| | W50 | Supramolecular hydrogen-bonded assembly of novel Janus nucleobases | Parbhat Kumar*, Aiden J.
Ward, Alejandro Lazaro,
and Benjamin E. Partridge | Department of Chemistry,
University of Rochester | | W51 | Synthesis of Adamantyl-Based
Cambiarenes | *Brady Birkenholtz, Jay
Wackerly | Central College | | W52 | Synthesis of hydrophilic polymers from renewable sources | Lillian Fairchild* Teah
Miller* Jay Wackerly | Central College | | W53 | Withdrawn | | | | W54 | Synthesis of Polysubstituted
Cylcobutanes and Natural Product
Analogues as Potential Therapeutics | Thomas J. Osberger*, Constantinos G. Gofas, Tatiana E. Lopez, Christa M. Larino, Mario Godinez, Daniel S. Jaramillo, Patricia Daniela Rodriguez, Kimchou Lao, Timmy B. Nguyen, Joanna Feng, Tommy Truong, Nhi Le, Minh T. Lu, Tan. N. Tan, Priscilla Laguna, Jessica A. Coronel, Rei J. David, Dean Papatheodouro, Andrew Hsieh, Kaitlin Paguio, Donna Hajhamid, Fatima L. Martinez, George M. Hernandez, Kristie E. Quintero, Lance Ochoa, Gil C. Rodriguez, Bridget Yang, Brianna Duenas, Li Kuang, and Francis Audrey Pamaran | California State
Polytechnic University,
Pomona | | W55 | Thiolactone-assisted Chemo-selective
Desulfurization of Native Peptides | Anil Talakokkula*, Godwin
Iwara, Qiang Zhang | State University of New York, University at Albany. | | W56 | Towards an Enzyme Mimic through DNA-Palladium Conjugation | Jingyi Sze*, Kadiatou
Diallo*, Chu Luo, Rachel
Jiang, Dave Gorin | Smith College | |-------------|---|--|---| | W 57 | Unexpected Orthogonality in the
Highly Site-Selective Oxidation of
Macrolide Antibiotics | Olivia C Langner*, Brandon
Q Mercado, Nicolò
Tampellini, Scott J Miller | Yale University | | W58 | Water has a pKa of 14.00, not 15.74:
Experimental, theoretical, and
historical evidence leave no doubt | Stephanie Schaertel 1*,
Tom Neils 2, Todd
Silverstein 3 | 1. Grand Valley State
University; 2. Grand
Rapids Community
College; 3. Willamette
University | | W59 | σ-Bond Insertion Reactions of Two
Strained Diradicaloids | Christina A. Rivera*,
Arismel Tena Meza,
Huiling Shao, Andrew V.
Kelleghan, K. N. Houk, and
Neil K. Garg | University of California,
Los Angeles | | W60 | Ab-Initio Investigation of the Mechanism of Phenazine Condensation Reactions | Viktorija Miseljic, Anne F.
Kiely, Brian H. Northrop* | Wesleyan University | | W61 | Kinetic Isotope Effects of Pd0 and Blue
Light Catalyzed Mizoroki-Heck Cross-
Coupling Reactions | Mathew J. Vetticatt, Patrick
Cole* | Binghamton University | | W62 | Zirconium-Catalyzed Reductive
Sulfonamidation of Amides and Its
Application to Site-Selective N-
Alkylation of Pharmaceuticals | Abhishek Raj*, Weiheng
Huang, Chabush Haldar,
Liela Bayeh-Romero | Baylor University | # **General Information** #### Food, shops, etc. near campus https://www.downtowntroyny.org/businesses #### Local attractions and activities The two NOS organized events are the Capt. JP riverboat cruise and NYS Capitol Building/Albany Institute of History and Art outings. There are many other local attractions such as Grafton Lakes State Part, walking tours of Troy, the Hart-Cluett Museum, and golfing options. For more details: https://www.nationalorganicsymposium.org/activities/ #### Yankee Trails Shuttle Service There is a complementary shuttle service provided for attendees staying at the RPI Blitman dormitory and the three local Troy hotels: the Hilton Garden Inn (235 Hoosick Street), Best Western Plus – Franklin Square Inn (1 4th Street), and the Courtyard Marriott Albany/Troy Waterfront (515 River Street). This complementary service is for transportation between the Troy hotels and RPI Blitman and EMPAC. This service does not include transportation to and from the Albany International Airport and the Amtrak station. #### **RPI Campus Parking** Parking will be available free of charge at two specified locations on campus: - **South Campus parking garage** (located at the upper/east College Ave entrance, #75 on map below) near EMPAC (building #76). - **North Lot** (located at Sage Ave, entrance located near the North Hall Residential Commons, #8 on map below) #### • ## **Uber Drop-off / Pick-up Locations** - 105 Eighth St. Troy, NY 12180 (next to Winslow Bldg. #78 on map below) - 1623 15th Street, Troy, NY (next to CBIS building #74 on map below) #### WiFi Access WiFi login credentials will be provided to all NOS attendees upon arrival. Details will be included in your registration materials, and assistance will be available if you encounter any connectivity issues. Attendees from higher education and research organizations which participate in the eduroam authentication service will not need additional credentials for WiFi. #### **Public Safety & Emergencies** In an emergency you can call 911 or RPI Public Safety 518-276-6611. There are also 100 blue light telephones or call boxes on and near campus. Contact with Public Safety is established as soon as the button is pushed. #### **RPI Alert System** Starting on Friday June 20th, Attendees and family members of the NOS can opt into the RPI Alert System by texting "RPINOS" to 888777. Subscribers will be automatically removed from the system at the conclusion of NOS. #### **Anti-Harassment Policy** The Division of
Organic Chemistry (DOC) seeks to foster a positive and safe environment for meeting attendees free from sexual or other forms of harassment, and characterized by courtesy and respect. If you have been subjected to or witnessed harassment, you are encouraged to report the incident to Ed Fenlon (efenlon@fandm.edu) or Amy Howell (amy.howell@uconn.edu). Alternatively, you may contact any DOC officer (listed on page 10) or use the ACS anonymous hotline: 855-710-0009 (English) or 800-216-1288 (Spanish). All reports will be treated confidentially, seriously, and acted upon promptly. #### Lactation room Soloist Suite #1, 6th floor EMBAC (one floor up from Concert Hall backstage) is provided as a lactation room for nursing mothers. #### **EMPAC Concert Hall Policy** Food and beverages are not permitted inside the EMPAC Concert Hall. However, bottled water is allowed. #### **RPI Blitman Dormitory Check-In** Attendees staying at the RPI Blitman Dormitory should check in and pick up their room keys directly at the dormitory on Sat 6/21 or Sun 6/22. Public safety will have an overnight presence at Blitman and can assist with the distribution of keys after hours. # Info for Attendees Staying at Blitman Dormitory ### The RPI Blitman Dormitory is a smoke-free and alcohol-free building. ### **Check-In and Room Key Distribution** Attendees will check in at the Blitman Dormitory and receive their room keys (physical keys provided in a labeled envelope). Check-in times: - Saturday, June 21: 12:00 PM 4:00 PM - Sunday, June 22: 11:00 AM 5:00 PM RPI Public Safety will be on site to distribute keys to attendees arriving after regular check-in hours. ### **Check-Out and Room Key Return** Keys must be returned in the original envelope using the designated drop-off box at Blitman. **Please note:** A \$100 fee will be charged for any lost or unreturned keys. ### Parking at Blitman Dormitory Attendees with vehicles may park in the Blitman parking lot, located directly adjacent to the dormitory. To facilitate access, attendees are required to provide their: - Name - Vehicle make, model, year - License plate number This information will be shared with RPI Public Safety and Transportation to ensure proper access and monitoring. ## Complimentary Yankee Trails Shuttle Service for Blitman Attendees Please note: RPI's campus is located on a steep hill (EMPAC is 0.2 miles away from the RPI Blitman Dormitory but there is a 108-foot elevation change over a short distance). Therefore, walking between campus locations may be difficult, especially for those with mobility concerns. We recommend using the complimentary shuttle services (or planning accordingly (Uber or Lyft)). Shuttle services will be provided exclusively for NOS attendees staying at Blitman and the Troy Hotels to and from EMPAC. • Attendees should wait at the bus shelter located at 6th Avenue and Broadway. - The shuttle will run multiple trips during each scheduled window. - Please note: Pick-up and drop-off times are approximate and may vary due to traffic and passenger volume. If there are delays, attendees may need to consider alternative transportation options. - This shuttle does not provide service to/from Albany International Airport or the Rensselaer Amtrak Station. #### RPI Campus Pick-Up/Drop-Off Location: EMPAC 7000-Level Entrance ### **Shuttle Schedule** #### Sunday, June 22 - 2:00 PM 4:00 PM: Blitman \rightarrow EMPAC - $10:00 \text{ PM} 12:00 \text{ AM}: \text{EMPAC} \rightarrow \text{Blitman}$ #### Monday, June 23 - 7:00 AM 9:00 AM: Blitman \rightarrow EMPAC - 12:30 PM 2:30 PM: EMPAC \rightarrow Blitman - 5:00 PM 7:00 PM: Blitman \rightarrow EMPAC - $10:30 \text{ PM} 12:00 \text{ AM}: \text{EMPAC} \rightarrow \text{Blitman}$ ### Tuesday, June 24 - 7:00 AM 9:00 AM: Blitman \rightarrow EMPAC - 12:30 PM 2:30 PM: EMPAC \rightarrow Blitman - 5:00 PM 7:00 PM: Blitman \rightarrow EMPAC - $10:30 \text{ PM} 12:00 \text{ AM}: \text{EMPAC} \rightarrow \text{Blitman}$ #### Wednesday, June 25 - 7:00 AM 9:00 AM: Blitman \rightarrow EMPAC - 12:30 PM 2:30 PM: EMPAC \rightarrow Blitman - 5:00 PM 7:00 PM: Blitman \rightarrow EMPAC - $10:30 \text{ PM} 12:00 \text{ AM}: \text{EMPAC} \rightarrow \text{Blitman}$ #### Thursday, June 26 - 7:00 AM 9:00 AM: Blitman \rightarrow EMPAC - 12:00 PM 2:00 PM: EMPAC \rightarrow Blitman # Info for Attendees Staying at Troy Hotels ### **Complimentary Shuttle Service Information** A complimentary Yankee Trails shuttle service is provided for NOS attendees staying at the designated Troy hotels. This service offers transportation between the hotels and RPI EMPAC only. Please note: This shuttle does not provide service to/from Albany International Airport or the Rensselaer Amtrak Station. ## Troy Hotels and Pick-Up/Drop-Off Locations - Franklin Square Inn Best Western Intersection of Museum Place and 4th Street - Hilton Garden Inn Hotel Portico - Courtyard by Marriott Curbside on River Street ## RPI Campus Pick-Up/Drop-Off Location • EMPAC 7000-Level Entrance #### **Shuttle Service Details** Approximate pick-up times are listed below. Each window includes multiple shuttle runs to accommodate attendees. Please be aware that pick-up and drop-off times may vary due to traffic conditions and rider volume. The estimated full route duration is 25–30 minutes. Alternate transportation methods may be necessary in the event of significant delays. ## **Troy Hotels** → **EMPAC Shuttle Schedule** #### Sunday, June 22 - 2:00 PM 4:00 PM: Troy Hotels \rightarrow EMPAC - $10:00 \text{ PM} 12:00 \text{ AM}: \text{EMPAC} \rightarrow \text{Troy Hotels}$ #### Monday, June 23 - 7:00 AM 9:00 AM: Troy Hotels $\rightarrow \text{EMPAC}$ - 12:30 PM 2:30 PM: EMPAC \rightarrow Troy Hotels - 5:00 PM 7:00 PM: Troy Hotels \rightarrow EMPAC - 10:30 PM 12:00 AM: EMPAC \rightarrow Troy Hotels #### Tuesday, June 24 - 7:00 AM 9:00 AM: Troy Hotels \rightarrow EMPAC - 12:30 PM 2:30 PM: EMPAC \rightarrow Troy Hotels - 5:00 PM 7:00 PM: Troy Hotels \rightarrow EMPAC - 10:30 PM 12:00 AM: EMPAC \rightarrow Troy Hotels #### Wednesday, June 25 - 7:00 AM 9:00 AM: Troy Hotels \rightarrow EMPAC - 12:30 PM 2:30 PM: EMPAC \rightarrow Troy Hotels - 5:00 PM 7:00 PM: Troy Hotels \rightarrow EMPAC - 10:30 PM 12:00 AM: EMPAC \rightarrow Troy Hotels #### Thursday, June 26 - 7:00 AM 9:00 AM: Troy Hotels \rightarrow EMPAC - 12:00 PM 2:00 PM: EMPAC \rightarrow Troy Hotels # Partial Campus Map with NOS sites ★ Click here for Full Campus Map